

Make: Basic
Arduino
Projects

26 Experiments with Microcontrollers
and Electronics

Don Wilcher

Make: Basic Arduino Projects
by Don Wilcher

Copyright © 2014 Don Wilcher. All rights reserved.

Printed in the United States of America.

Published by Maker Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

Maker Media books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://my.safaribooksonline.com). For more
information, contact O’Reilly Media’s corporate/institutional sales department:
800-998-9938 or corporate@oreilly.com.

Editor: Patrick Di Justo
Production Editor: Kara Ebrahim
Copyeditor: Charles Roumeliotis
Proofreader: Jasmine Kwityn
Indexer: Ellen Troutman
Cover Designer: Juliann Brown
Interior Designer: David Futato
Illustrator: Rebecca Demarest
Photographers: Frank Teng and Don Wilcher

February 2014: First Edition

Revision History for the First Edition:

2014-02-05: First release

2014-03-07: Second release

See http://oreilly.com/catalog/errata.csp?isbn=9781449360665 for release details.

The Make logo and Maker Media logo are registered trademarks of Maker Media, Inc. Make:
Basic Arduino Projects and related trade dress are trademarks of Maker Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and Maker Media,
Inc., was aware of a trademark claim, the designations have been printed in caps or initial
caps.

While every precaution has been taken in the preparation of this book, the publisher and
author assume no responsibility for errors or omissions, or for damages resulting from the
use of the information contained herein.

ISBN: 978-1-449-36066-5

[LSI]

Preface. ix

1. The Trick Switch. 1
Parts List. 1
Let’s Build a Trick Switch. 2
Trick Switch with On/Off Indicators. 4
Something to Think About. 6

2. Sunrise-Sunset Light Switch. 9
Parts List. 9
Let’s Build a Sunrise-Sunset Light Switch. 10
Circuit Theory. 12
Sunrise-Sunset Detector with Serial Monitor. 14
Something to Think About. 16

3. Tilt Sensing Servo Motor Controller. 19
Parts List. 19
Let’s Build a Tilt Sensing Servo Motor Controller. 20
Upload the Tilt Sensor Sketch. 23
A Simple Animatronic Controller Using the Serial Monitor. 24
Circuit Theory. 27
Something to Think About. 28

4. Twin LEDs. 29
Parts List. 29
Circuit Theory. 31

iii

Contents

Twin LED Flasher. 31
Build the Adjustable Twin LED Flasher. 35
It’s Alive! Build a FrankenBot Toy. 38
Something to Think About. 41

5. The Opposite Switch. 43
Parts List. 43
Circuit Theory. 44
The Opposite Switch (aka the NOT Logic Gate). 45
Build an Arduino NOT Logic Gate. 45
Upload the Arduino NOT Logic Gate Sketch. 46
Something to Think About. 50

6. The AND Logic Gate. 51
Parts List. 51
Circuit Theory. 52
The Arduino AND Logic Gate. 55
Upload the Arduino AND Logic Gate Sketch. 57
Something to Think About. 59

7. The OR Logic Gate. 61
Parts List. 61
Circuit Theory. 62
The Arduino OR Logic Gate. 64
Upload the Arduino OR Logic Gate Sketch. 66
Something to Think About. 69

8. Tilt Flasher. 71
Parts List. 71
Circuit Theory. 72
The Up-Down Sensor. 73
Something to Think About. 76

9. Multicolor RGB Flasher. 79
Parts List. 79
Circuit Theory. 80
The RGB Flasher. 81

iv Contents

Something to Think About. 86

10. The Magic Light Bulb. 87
Parts List. 87
Let’s Build a Magic Light Bulb. 88
Upload the Magic Light Bulb Sketch. 89
Circuit Theory. 91
Something to Think About. 92

11. Metal Checker: The Electronic Switch. 95
Parts List. 95
Let’s Build a Metal Checker. 96
Upload the Metal Checker Sketch. 98
Circuit Theory. 100
Something to Think About. 101

12. The Theremin. 103
Parts List. 103
Let’s Build a Theremin. 104
Upload the Theremin Sketch. 106
Circuit Theory. 109
Something to Think About. 110

13. An Arduino Ohmmeter. 111
Parts List. 111
Let’s Build an Arduino Ohmmeter. 112
Upload the Arduino Ohmmeter Sketch. 113
Circuit Theory. 115
Something to Think About. 117

14. The LCD News Reader. 119
Parts List. 119
Let’s Build the LCD. 120
Upload the LCD News Reader Sketch. 122
Circuit Theory. 128
Something to Think About. 129

15. A Logic Tester (with an RGB LED). 131
Parts List. 131

Contents v

Let’s Build a Logic Tester. 132
Upload the Logic Tester Sketch. 133
Circuit Theory. 135
Something to Think About. 136

16. A Logic Tester (with an LCD). 137
Parts List. 137
Let’s Build a Logic Tester. 138
Upload the Logic Tester Sketch. 139
Circuit Theory. 141
Something to Think About. 142

17. The Amazing Pushbutton (with Processing). 143
Parts List. 143
Let’s Build an Amazing Pushbutton. 144
Upload the Amazing Pushbutton Sketch. 146
Download and Install Processing Notes. 148
Let’s Visualize Digital Data with Processing. 148
Troubleshooting Tips for Processing. 155
Something to Think About. 156

18. The Terrific Tilt Switch (with Processing). 157
Parts List. 157
Let’s Build a Terrific Tilt Switch. 158
Upload the Terrific Tilt Switch Sketch. 159
Let’s Visualize Digital Data with Processing. 162
Something to Think About. 167

19. The Rocket Launching Game (with Processing). 169
Parts List. 169
Let’s Build a Rocket Game. 170
Upload the MultiDigital4 Sketch. 171
The Rocket Launcher with Processing. 174
Something to Think About. 181

20. Temperature Indicator (with Processing). 183
Parts List. 183
Let’s Build a Temperature Indicator. 184

vi Contents

Upload the Temperature Indicator Sketch. 185
The Negative Temperature Coefficient (NTC) Sensor with Processing. . . 188
Something to Think About. 191

21. Sweeping Servo. 193
Parts List. 193
Let’s Build a Servo Motor Tester. 194
Upload the Sweeping Sketch. 195
Something to Think About. 198

22. Electronic Cricket. 199
Parts List. 199
Let’s Build an Electronic Cricket. 200
Upload the Electronic Cricket Sketch. 201
Something to Think About. 204

23. A Pocket Stage Light. 205
Parts List. 205
Let’s Build a Pocket Stage Light. 206
Upload the Pocket Stage Light Sketch. 208
Something to Think About. 211

24. Electronic Pixel. 213
Parts List. 213
Let’s Build an Electronic Pixel. 214
Upload the Electronic Pixel Sketch. 216
Something to Think About. 219

25. The Metronome. 221
Parts List. 221
Let’s Build a Metronome. 222
Upload the Metronome Sketch. 225
Something to Think About. 228

26. The Secret Word Game. 231
Parts List. 231
Let’s Build a Secret Word Game. 232
Upload the Secret Word Game Sketch. 234
Rules for the Secret Word Game. 237

Contents vii

Something to Think About. 237

Index. 239

viii Contents

So, you’ve bought the Ultimate Microcontroller Pack to build some cool and fun
Arduino projects. Now all you need are some sample projects to build with it! The
Basic Arduino Projects book is here to help you! It’s got a wealth of cool devices and
gadgets to build with your Ultimate Microcontroller Pack. The projects in the book
explain the world of electronics using a fun and hands-on approach.

The motivation behind writing this book is based on several conversations with
Brian Jepson (Make: Books Senior Editor) and the need for a book that allows people
to explore the electronic parts and the Arduino within the Ultimate Microcontroller
Pack. The Arduino is a very popular Maker platform that allows you to explore elec-
tronics with an interactive approach. As awesome as a box of parts is, it’s difficult for
people with little electronics experience to begin making things with it. This book
solves that problem by letting you learn more about electronics while you make fun
projects with the parts in this kit. Basic Arduino Projects is a practical guide that
illustrates how a bunch of electronic parts, coupled with Arduino, can be trans-
formed into awesome devices and gadgets for education and play.

In addition, being an electrical engineer and educator, I’m very sensitive to deliver-
ing good instructional content to my students (adults and teenagers). This book was
written to attract young readers to the exciting world of electronics by building cool
and creative projects using the Ultimate Microcontroller Pack. This book is also in-
tended for Makers and novices who have heard about the Arduino but never ex-
perienced the fun and excitement that comes from building cool electronic gadgets
and devices with this open hardware platform.

By building and experimenting with the projects in this book, young readers, Mak-
ers, and electronic novices will learn how to:

• Read electronic circuit schematic and block diagrams.

• Assemble electronic circuits using the MakerShield prototyping board.

ix

Preface

book and quoting example code does not require permission. Incorporating a sig-
nificant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Make: Basic Arduino Projects by Don
Wilcher (Maker Media). Copyright 2014 Don Wilcher, 978-1-449-36066-5.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at bookpermissions@makermedia.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s
leading authors in technology and business.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles before
they are available for print, get exclusive access to manuscripts in development, and
post feedback for the authors. Copy and paste code samples, organize your favorites,
download chapters, bookmark key sections, create notes, print out pages, and ben-
efit from tons of other time-saving features.

Maker Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from MAKE and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

MAKE
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

MAKE unites, inspires, informs, and entertains a growing community of resourceful
people who undertake amazing projects in their backyards, basements, and
garages. MAKE celebrates your right to tweak, hack, and bend any technology to
your will. The MAKE audience continues to be a growing culture and community
that believes in bettering ourselves, our environment, our educational system—our
entire world. This is much more than an audience, it’s a worldwide movement that
Make is leading—we call it the Maker Movement.

Preface xi

For more information about MAKE, visit us online:

MAKE magazine: http://makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/basic-arduino.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

Acknowledgments
I would like to thank Brian Jepson (Senior Editor) for believing in the book concept
and allowing me to explore the Ultimate Microcontroller Pack in creative ways. Also,
I would like to thank Patrick Di Justo (Editor) for pulling out the really cool projects
from the original book proposal and coaching me to present them in fun and en-
tertaining ways for young readers.

My final acknowledgment goes to my wife, Mattalene, who patiently worked with
me on editing this book, keeping me on task with the writing/project builds, and
reviewing the email revision messages from my editors. To my children, Tiana,
D’Vonn, and D’Mar, thanks for being great kids while I worked on the book during
family time.

xii Preface

Figure 1-3. Adding a green LED indicator to the Trick Switch circuit built on a full-size clear
breadboard

To complete the new product design, you need to make a few changes to the Push-
button sketch. Modify the sketch using the code changes shown in Example 1-2.

Example 1-2. Pushbutton sketch modified to include LED indicators

// constants won't change; they're used here to
// set pin numbers:
const int buttonPin = 2; // the number of the pushbutton pin
const int ledPin = 12; // the number of the LED pin
const int ledPin13 = 13; // onboard LED

void setup() {
 // initialize the LED pins as outputs:
 pinMode(ledPin, OUTPUT);
 pinMode(ledPin13, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 int buttonStatus;
 buttonStatus = digitalRead(buttonPin);

 // check if the pushbutton is pressed
 // if it is, the buttonStatus is HIGH:
 if (buttonStatus == HIGH) {

Chapter 1: The Trick Switch 5

 // turn LED on:
 digitalWrite(ledPin, HIGH);
 // turn off onboard LED:
 digitalWrite(ledPin13,LOW);
 }
 else {
 // turn LED off:
 digitalWrite(ledPin, LOW);
 // turn on onboard LED:
 digitalWrite(ledPin13, HIGH);
 }
}

After you’ve saved the sketch changes and uploaded them to the Arduino, the green
LED will turn on. When you press the mini pushbutton, the green LED will turn off,
and the red LED will turn on. Pretty awesome stuff. Enjoy!

The block diagram in Figure 1-4 shows the electronic component blocks and the
electrical signal flow for the Trick Switch. A Fritzing electronic circuit schematic di-
agram of the switch is shown in Figure 1-5. Electronic circuit schematic diagrams
are used by electrical/electronic engineers to design and build cool electronic prod-
ucts for society.

Figure 1-4. Trick Switch block diagram

Something to Think About
Try different resistor and capacitor values and see what happens. Can you detect
any patterns? How can a small piezo buzzer be used with the Trick Switch?

6 Make: Basic Arduino Projects

Figure 1-5. Trick Switch circuit schematic diagram

Chapter 1: The Trick Switch 7

Figure 2-1. Sunrise-Sunset Light Switch circuit built on a full-size clear breadboard (the 100 uF
electrolytic capacitor and the red and green LED negative pins are wired to ground)

Let’s Build a Sunrise-Sunset Light
Switch
You can build a Sunrise-Sunset Light Switch by modifying the Trick Switch device
from Chapter 1. The main change you will make is to remove the mini pushbutton
and replace it with a photocell. You will also add a green LED to pin D13 of the
Arduino. Refer to the Parts List for all the electronic parts required for this project.
Here are the steps required to build the electronic device:

1. From the Ultimate Microcontroller Pack, place the required parts on your work-
bench or lab tabletop.

2. Wire the electronic parts using the Fritzing diagram of Figure 2-2 or the actual
Sunrise-Sunset Light Switch device shown in Figure 2-1.

3. Type Example 2-1 into the Arduino IDE.

4. Upload the Sunrise-Sunset sketch to the Arduino. The green LED will be on.

10 Make: Basic Arduino Projects

5. Wave your hand over the photocell for a moment. The red LED turns on. After
a few seconds, the red LED will turn off, and the green LED will turn on.

Figure 2-2. Sunrise-Sunset Light Switch Fritzing diagram

Example 2-1. Sunrise-Sunset Light Switch sketch

/*
 Sunrise-Sunset Light Switch

 Turns on and off a light-emitting diode (LED) connected to digital
 pins 12 and 13 after 10 to 20 seconds, by waving a hand over a photocell
 attached to pin 2.

 23 Nov 2012
 by Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
const int lightsensorPin = 2; // the number of the light sensor pin

Chapter 2: Sunrise-Sunset Light Switch 11

const int redledPin = 12; // the number of the red LED pin
const int greenledPin13 = 13; // onboard LED and green LED pin

// variables will change:
int sensorState = 0; // variable for reading light sensor status

void setup() {
 // initialize the LED pins as outputs:
 pinMode(redledPin, OUTPUT);
 pinMode(greenledPin13, OUTPUT);
 // initialize the light sensor pin as an input:
 pinMode(lightsensorPin, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 sensorState = digitalRead(lightsensorPin);

 // check if the light sensor is activated
 // if it is, the sensorState is HIGH:
 if (sensorState == HIGH) {
 // turn red LED on:
 digitalWrite(redledPin, HIGH);
 // turn off onboard LED and green LED:
 digitalWrite(greenledPin13, LOW);
 }
 else {
 // turn red LED off:
 digitalWrite(redledPin, LOW);
 // turn on onboard LED and green LED;
 digitalWrite(greenledPin13, HIGH);
 }
}

Circuit Theory
The Sunrise-Sunset Light circuit operates like the Smart Switch, except you don’t
have to use a mini pushbutton to start the timing function. The mini pushbutton
has instead been replaced with a light sensor called a photocell. A photocell is a
variable resistor that changes its resistance based on the amount of light touching
its surface. Light falling on a photocell will decrease its resistance value. No light will
increase its resistance value. Figure 2-3 shows the resistor-capacitor (RC) timing
circuit with a photocell variable resistor symbol.

12 Make: Basic Arduino Projects

 pinMode(greenledPin13, OUTPUT);
 // initialize the light sensor pin as an input:
 pinMode(lightsensorPin, INPUT);
 // initialize serial communications at 9600 bps:
 Serial.begin(9600); // Add code instruction here!
}

void loop(){
 // read the state of the light sensor value:
 sensorState = digitalRead(lightsensorPin);

 // check if the light sensor is activated
 // if it is, the sensorState is HIGH:
 if (sensorState == HIGH) {
 // turn red LED on:
 digitalWrite(redledPin, HIGH);
 // turn off onboard LED and green LED:
 digitalWrite(greenledPin13, LOW);
 // display message
 Serial.println("Sunset\n"); // Add code instruction here!

 }
 else {
 // turn red LED off:
 digitalWrite(redledPin, LOW);
 // turn on onboard LED and green LED;
 digitalWrite(greenledPin13,HIGH);
 // display message
 Serial.println("Sunrise\n"); // Add code instruction here!
 }
}

With the modifications made to the original sketch, upload it to the Arduino and
open the Serial Monitor. As you wave your hand over the photocell, you see the
messages “Sunrise” (no hand over the sensor) and “Sunset” (hand over the sensor)
displayed on the Serial Monitor. Figure 2-5 shows the two messages displayed on
the Serial Monitor.

Experiment with the location of the Sunrise-Sunset detector to obtain the best cir-
cuit response. Enjoy!

The block diagram in Figure 2-6 shows the electronic component blocks and the
electrical signal flow for the Sunrise-Sunset Light Switch. A Fritzing electronic circuit
schematic diagram of the switch is shown in Figure 2-7. Electronic circuit schematic
diagrams are used by electrical/electronic engineers to design and build cool elec-
tronic products for society.

Chapter 2: Sunrise-Sunset Light Switch 15

Figure 2-7. Sunrise-Sunset Light Switch circuit schematic diagram

Chapter 2: Sunrise-Sunset Light Switch 17

Figure 3-1. Tilt Sensing Servo Motor Controller built on a full-size clear breadboard

Let’s Build a Tilt Sensing Servo Motor
Controller
You can control a servo motor’s rotation direction through orientation detection
using a tilt control switch. In this project, you will build a Tilt Sensing Servo Motor
Controller. Refer to the Parts List for all the electronic components required for this
project. Here are the steps used to build the electronic device:

1. From the Ultimate Microcontroller Pack, place the required parts on your work-
bench or lab tabletop.

2. Assemble the servo motor with the appropriate mechanical assembly attach-
ment, as shown in Figure 3-2 (left).

3. Strip insulation from three ¼-inch solid wires and insert them into the servo
motor’s mini connector, as shown in Figure 3-2 (right).

20 Make: Basic Arduino Projects

Figure 3-2. Servo motor with mechanical assembly attachment and modified servo motor wire
connector (left); close-up of modified servo motor wire connector (right)

4. Place and secure the servo motor on the full-size clear breadboard with hookup
wire, as shown in Figure 3-3.

5. Insert the modified servo motor wire connector into the full-size clear bread-
board, as shown in Figure 3-4.

6. Wire the electronic parts using the Fritzing diagram of Figure 3-5, or the actual
project shown in Figure 3-1.

Chapter 3: Tilt Sensing Servo Motor Controller 21

Figure 3-3. Placing and securing the servo motor on the full-size clear breadboard

Figure 3-4. Modified servo motor wire connector inserted into the full-size clear breadboard

22 Make: Basic Arduino Projects

Figure 3-6. Digital data from tilt control switch: open tilt control switch (left), closed tilt control
switch (right)

Example 3-2. Tilt Control Switch with Serial Monitor

/* This sketch controls a servo motor using a tilt control switch!
 * Serial Monitor displays digital data from Tilt Control Switch.
 *
 * 15 December 2012
 * by Don Wilcher
 *
 */

#include<Servo.h> // include Servo library
int inPin = 2; // the Arduino input pin tilt control switch is wired to D2
int reading; // the current reading from the input pin
Servo myservo; // create servo motor object

void setup()
{
 myservo.attach(9); // attach servo motor to pin 9 of Arduino
 pinMode(inPin, INPUT); // make pin 2 an input
 Serial.begin(9600); // open communication port
}

void loop()
{
 reading = digitalRead(inPin); // store digital data in variable
 if(reading == HIGH) { // check it against target value (HIGH)

 myservo.write(90); // if digital data equals target value,
 // servo motor rotates 90 degrees
 Serial.println(reading); // print tilt control switch digital data
 delay(15); // wait 15ms for rotation
 }
 else { // if it's not equal to target value...

Chapter 3: Tilt Sensing Servo Motor Controller 25

Figure 3-8. Tilt Sensing Servo Motor Controller circuit schematic diagram: orange wire (D9), red
wire (+5V), and brown wire (GND)

Circuit Theory
A tilt control switch is an electrical device used to detect orientation. Like using a
mini pushbutton and a light detector, a tilt control switch is another way to interact
with and control the Arduino.

The tilt control switch is a pair of small metal balls that make contact with pins and
close the circuit when the electrical device is held in an upright position. Figure 3-9
shows a typical tilt control switch. The tilt control switch can be wired to a resistor
to make an orientation detection sensor circuit.

Figure 3-10 shows an orientation detection sensor circuit and its electrical operating
conditions. The Arduino’s D2 pin is wired to the 1KΩ resistor in order to receive either
a zero or five volt control signal, based on the tilt control switch orientation. With
the tilt control switch pins open, the voltage across the 1KΩ resistor is zero volts.
When the switch pins are closed, the 1KΩ resistor has a five volt signal across it.

Chapter 3: Tilt Sensing Servo Motor Controller 27

Figure 4-1. Variety of LEDs

Figure 4-2. Twin LEDs block diagram

30 Make: Basic Arduino Projects

Circuit Theory
An LED is an electronic part that emits light when properly wired in an electric circuit.
The LED has positive and negative leads protruding through a plastic body, as shown
in Figure 4-1. You can use the Arduino in electronic projects to operate multiple
LEDs. Figure 4-3 shows two LEDs wired to the Arduino D13 pin. The Arduino output
pins are capable of providing 40 mA (milliamperes) of electrical current, sufficient
to turn on two LED circuits wired in parallel.

Figure 4-3. Two LED circuits wired in parallel to the Arduino D13 pin; the arrows indicate the
LEDs are on

Twin LED Flasher
The circuit theory diagram shown in Figure 4-3 can easily be converted into a cool
electronic gadget. You can build a Twin LED Flasher using an Arduino, two 330 ohm
resistors, and LEDs, as shown in Figure 4-4. The Twin LED Flasher circuit schematic
diagram is shown in Figure 4-5. To make the flasher device compact, you can build
it on the MakerShield, as shown in Figure 4-6. Uploading the Blink sketch to the
Arduino allows you to test the MakerShield and the Twin LED Flasher. The Blink
sketch for the electronic flasher is shown in Example 4-1.

Chapter 4: Twin LEDs 31

Figure 4-6. MakerShield Twin LED Flasher

Example 4-1. Blink sketch

/*
 Blink
 Turns on an LED on for one second, then off for one second, repeatedly.

 This example code is in the public domain.
 */

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pin as an output:
 pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 digitalWrite(led, HIGH); // turn the LED on (HIGH is the voltage level)
 delay(1000); // wait for a second
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(1000); // wait for a second
}

34 Make: Basic Arduino Projects

Build the Adjustable Twin LED Flasher
To make the Adjustable Twin LED Flasher, simply add a 10K ohm potentiometer to
the device. The flash rate can be adjusted to make the on/off toggling slower or
faster. The Fritzing diagram in Figure 4-7 along with the circuit schematic diagram
shown in Figure 4-8 will allow you to build the Adjustable Twin LED Flasher. The
MakerShield Adjustable Twin LED Flasher is shown in Figure 4-9 and the Adjustable
Twin LED Flasher sketch is shown in Example 4-2.

Figure 4-7. Adjustable Twin LED Flasher Fritzing diagram

Chapter 4: Twin LEDs 35

Figure 4-8. Adjustable Twin LED Flasher circuit schematic diagram

Example 4-2. Adjustable Twin LED Flasher sketch

/*
 Adjustable Twin LED Flasher
 Two LEDs will flash at a specified rate
 based on the 10K potentiometer setting.

 01 Jan 2013
 by Don Wilcher

 */

// Two LEDs with 330 ohm series resistors wired
// in parallel connected to pin 9.
int led = 9; // pin D9 assigned to led variable.

// A 10K potentiometer center pin wired to pin A0.
// One pin is wired to +5V with the other connected to GND.
int PotIn = A0; // pin A0 assigned to PotIn variable.

int Flash; // Flash variable to be used with "delay" instruction.

// the setup routine runs once when you press reset:
void setup() {

36 Make: Basic Arduino Projects

 // initialize the digital pin as an output:
 pinMode(led, OUTPUT);
 // initialize the analog pin as an input:
 pinMode(PotIn, INPUT);
}

// the loop routine runs over and over again forever:
void loop() {
 Flash =analogRead(PotIn); // read 10K pot, store value in Flash variable
 digitalWrite(led, HIGH); // turn the LED on (HIGH voltage level = on)
 delay(Flash); // wait for a Flash time delay in seconds
 digitalWrite(led, LOW); // turn the LED off by making the voltage LOW
 delay(Flash); // wait for a Flash time delay in seconds
}

Figure 4-9. MakerShield Adjustable Twin LED Flasher

Chapter 4: Twin LEDs 37

It’s Alive! Build a FrankenBot Toy
You can build an interactive toy that responds to changing light levels by removing
the 10KΩ potentiometer and adding a photocell wired to a 1KΩ resistor of the Ad-
justable Twin LED Flasher. Wiring a photocell to a 1KΩ resistor allows the Arduino
to read light levels applied to pin A0. Figure 4-10 and Figure 4-11 show the Fritzing
and circuit schematic diagrams for the Interactive Twin LED Flasher. The Maker-
Shield Interactive Twin LED is shown in Figure 4-12.The photocell leads are bent
down to allow FrankenBot’s cardboard head to mount nicely on top of the Maker-
Shield, as shown in Figure 4-13.

Figure 4-10. Interactive Twin LED Flasher Fritzing diagram

38 Make: Basic Arduino Projects

Figure 4-12. Makershield Interactive Twin LED Flasher

Figure 4-13. FrankenBot: cut out opening for the photocell and LEDs to pass through cardboard
FrankenBot head (left); mount cardboard Frankenbot head on top of MakerShield Interactive
Twin LED Flasher (right)

40 Make: Basic Arduino Projects

Figure 5-1. The Arduino NOT Logic Gate

Circuit Theory
A NOT Logic Gate turns a TRUE signal into a FALSE signal. Let’s take the case of the
ordinary household light switch: When you flip the light switch in your home UP,
the light bulb turns on. Now, let’s mount the house light switch upside down. When
you send an UP signal to the switch, the light bulb will turn off. When you send a
DOWN signal to the switch, the light bulb turns on. To illustrate this basic FALSE-
TRUE operation, Figure 5-2 shows a simple NOT Logic Gate circuit you can build and
experiment with, using a few electronic components from the Ultimate Microcon-
troller Pack. After wiring the NOT Logic Gate circuit on the breadboard, the red LED
will be on. Pressing the pushbutton switch will turn the red LED off.

Figure 5-2. A simple NOT Logic Gate Fritzing wiring diagram

44 Make: Basic Arduino Projects

Figure 5-5. The NOT Logic Gate Fritzing wiring diagram

The Arduino NOT Logic Gate will turn the green LED on once the sketch has been
uploaded to the microcontroller. Pressing the pushbutton switch will turn the green
LED off and the red LED will be on. Figure 5-6 shows the Arduino NOT Logic Gate in
operation. The green LED shows a TRUE output state when the pushbutton switch
in not pressed. Pressing the pushbutton switch shows a FALSE output state by turn-
ing on the red LED. Also,the != in the Arduino sketch is the computer programming
symbol for the logical NOT function.

Chapter 5: The Opposite Switch 47

Figure 5-6. The Arduino NOT Logic Gate: pressing the pushbutton switch turns on the red LED
(FALSE output)

Example 5-1. The Arduino NOT Logic Gate sketch

/*
 Arduino_NOT_Logic_Gate

 This sketch demonstrates the NOT(Inverter) Logic Gate operation.

 With the pushbutton switch not pressed (Logic LOW input), the green LED
 (Logic HIGH output indicator) is on and the red LED (Logic LOW output
 indicator) is off.
 Pressing the pushbutton turns the green LED off and the red LED on.

 11 September 2013
 by Don Wilcher

 */

// set pin numbers:
int buttonPin = 2; // the number of the pushbutton pin
int LEDred = 8; // pin number for the red LED
int LEDgreen = 9; // pin number for the green LED

// variables will change:
int buttonStatus = 0; // variable for reading the pushbutton status

void setup() {
 // initialize the LED pins as outputs:
 pinMode(LEDred, OUTPUT);
 pinMode(LEDgreen, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);

48 Make: Basic Arduino Projects

Figure 5-8. The Arduino NOT Logic Gate block diagram

Figure 5-9. The Arduino NOT Logic Gate circuit schematic diagram

Something to Think About
How can a photocell be used to operate the Arduino NOT Logic Gate?

50 Make: Basic Arduino Projects

Figure 6-3. The AND Logic Gate Fritzing wiring diagram; the flat side of the LED is the negative
pin

Just like the NOT Logic Gate discussed in Chapter 5, the AND Logic Gate has a special
circuit symbol, shown in Figure 6-4. The truth table (TT) shows the logic gate oper-
ation. Figure 6-5 is an AND Logic Gate TT.

Figure 6-4. The AND Logic Gate circuit symbol

Figure 6-5. The AND Logic Gate truth table

54 Make: Basic Arduino Projects

Figure 6-6. The Arduino AND Logic Gate with LED turned off

Figure 6-7. The Arduino AND Logic Gate with LED turned on

56 Make: Basic Arduino Projects

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 6-1 into the software’s text editor.

3. Upload the sketch to the Arduino.

4. Press the mini pushbutton switch for a moment.

The Arduino AND Logic Gate will turn on the LED when the photocell is covered and
the pushbutton switch is pressed. Releasing the pushbutton switch, or placing a
light on the photocell, turns the LED off, because the AND condition (in which both
switches are closed) no longer exists.

The Arduino does this by using the && operator in the if statement. && is the computer
programming symbol for the logical AND function.

Example 6-1. The Arduino AND Logic Gate sketch

/*
 The Arduino AND Logic Gate

 Turns on an LED connected to digital
 pin 7, when pressing a pushbutton switch and covering a photocell
 attached to pins 3 and 4.

27 Jan 2013
Revised 4 September 2013
by Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
int B = 3; // the number of the B pushbutton pin
int A = 4; // the number of the A pushbutton pin

const int Cout = 7; // the number of the LED pin

// variables will change:
int AStatus = 0; // variable for reading the A pushbutton status
int BStatus = 0;
void setup() {
 // initialize the LED pin as an output:
 pinMode(Cout, OUTPUT);
 // initialize the pushbutton pins as inputs:
 pinMode(B, INPUT);
 pinMode(A, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 AStatus = digitalRead(A);
 BStatus = digitalRead(B);

58 Make: Basic Arduino Projects

Figure 6-10. The Arduino AND Logic Gate circuit schematic diagram

60 Make: Basic Arduino Projects

Figure 7-4. The OR Logic Gate circuit symbol

Figure 7-5. The OR Logic Gate Truth Table

The Arduino OR Logic Gate
You can build a digital computer OR Logic Gate circuit using the Arduino micro-
controller and a few electronic components from the Ultimate Microcontroller
Pack. The green LED turns on when either the pushbutton switch OR the photocell
is TRUE. You can easily build the logic circuit using the Fritzing wiring diagram shown
in Figure 7-6. You can build this basic digital computer circuit on MakerShield, as
shown in Figure 7-1.

Did you notice that the Fritzing wiring diagram looks like the AND Logic Gate circuit
of Chapter 6? That’s because it is. The cool thing about using an Arduino (or any
other computer, really) is that often you can use the same physical circuit and make
it do different things, simply by changing the computer code. In this case, either
pressing the pushbutton switch OR placing your hand over the photocell will turn
on the green LED.

This cool gadget can become an automatic LED night light. If your home loses power
because of an electrical storm or the area substation is not operating, this device
can function as an automatic light source. The photocell is electrically wired to detect
darkness. When night falls (or when the power fails), the signal at pin D4 becomes
TRUE, and the Arduino microcontroller turns on the green LED, as in Figure 7-7. Or,
if you just want to turn the light on when it isn’t dark out, you can just hit the push-
button switch. This makes the signal at pin D3 TRUE, which again causes the Arduino
microcontroller to turn on the green LED.

64 Make: Basic Arduino Projects

Figure 7-6. The Arduino OR Logic Gate Fritzing wiring diagram

Chapter 7: The OR Logic Gate 65

Example 7-1. The Arduino OR Logic Gate sketch

/*
 The Arduino OR Logic Gate

 Turns on an LED connected to digital
 pin 7, when pressing either a pushbutton switch or covering a photocell
 attached to pins 3 and 4.

 27 Jan 2013
 Revised 4 September 2013
 by Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
int B = 3; // the number of the B pushbutton pin
int A = 4; // the number of the A pushbutton pin

const int Cout = 7; // the number of the LED pin

// variables will change:
int AStatus = 0; // variable for reading the A pushbutton status
int BStatus = 0;
void setup() {
 // initialize the LED pin as an output:
 pinMode(Cout, OUTPUT);
 // initialize the pushbutton pins as inputs:
 pinMode(B, INPUT);
 pinMode(A, INPUT);
}

void loop(){
 // read the state of the pushbutton value:
 AStatus = digitalRead(A);
 BStatus = digitalRead(B);

 // check if the pushbuttons are pressed
 // if it is, the buttonStatus is HIGH:
 if (AStatus == HIGH || BStatus ==HIGH) {
 // turn LED on:
 digitalWrite(Cout, HIGH);
 }
 else {
 // turn LED off:
 digitalWrite(Cout, LOW);
 }
}

After uploading the Arduino OR Logic Gate sketch to the Arduino microcontroller,
the green LED is off. Pressing the pushbutton switch or placing your hand over the

Chapter 7: The OR Logic Gate 67

photocell will turn on the green LED. To completely test the Arduino OR Logic Gate’s
operation, remember to use the TT shown in Figure 7-5.

The block diagram in Figure 7-8 shows the building blocks and the electrical signal
flow for the Arduino OR Logic Gate. Circuit schematic diagrams are used by electrical
engineers to quickly build cool electronic devices. The equivalent circuit schematic
diagram for the Arduino OR Logic Gate is shown in Figure 7-9.

Figure 7-8. The Arduino OR Logic Gate block diagram

Figure 7-9. The Arduino OR Logic Gate circuit schematic diagram

68 Make: Basic Arduino Projects

Figure 8-4. The Up-Down Sensor Fritzing diagram

74 Make: Basic Arduino Projects

Figure 8-5. The Up-Down Sensor circuit schematic diagram

You can build the Up-Down Sensor on a MakerShield, as shown in Figure 8-6. The
MakerShield allows you to carry it in a shirt pocket, computer bag, or purse for
convenience. Example 8-1 can be uploaded to the Arduino after entering the code
into the IDE’s text editor screen.

Example 8-1. Up-Down Sensor sketch

/*
 Up-Down Sensor with Flashing LEDs

 Flashes green and red LEDs at pin 8 when the tilt control
 switch attached to pin 3 is tilted. The green LED wired to
 pin 8 turns turns solid when no tilt condition is detected.

 05 Feb 2013
 Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
const int tiltPin = 3; // the number of the tilt control switch pin
const int ledPin = 8; // the number of the LED pin

// variables will change:
int tiltState = 0; // variable for tilt control switch status

void setup() {

Chapter 8: Tilt Flasher 75

Figure 8-6. The Up-Down Sensor built on a MakerShield

Chapter 8: Tilt Flasher 77

Circuit Theory
Figure 9-2 shows a typical RGB LED with the wiring pinout names. There are three
pins, one for each color, and one common pin for positive attachment to a power
supply. Like the ordinary LED, the positive and negative pins are wired to the positive
and negative points of a DC (direct current) circuit. To illustrate, Figure 9-3 shows
three SPST (single pole, single throw) switches wired to control red, green, and blue
LEDs. Closing the contacts on SPST switch SW1 will allow the battery’s (VBattery)
current to flow through the red LED, turning it on. The other switches (SW2 and SW3)
will turn on the green and blue LEDs as well. The individual colors can be lit se-
quentially or at random using the three SPST switches. The Arduino microcontroller
will provide a sequential switching order, allowing the red, green, and blue LEDs to
turn on accordingly.

Figure 9-2. A typical RGB LED with pinout names

80 Make: Basic Arduino Projects

Figure 9-4. The RGB Flasher Fritzing diagram

82 Make: Basic Arduino Projects

Figure 9-6. The RGB Flasher built on a MakerShield

Example 9-1. The RGB Flasher sketch

/*
 RGB Flasher

 Flashes the red, green, and blue LEDs of an RGB LED
 Turns on an LED on for one second, then off for one second for each
 color LED.

 15 Feb 2013
 Don Wilcher

 */

// RGB pins wired to the Arduino microcontroller.
// give them names:
int redled = 9;
int grnled = 10;
int bluled = 11;

// the setup routine runs once when you press reset:
void setup() {
 // initialize the digital pins as outputs:
 pinMode(redled, OUTPUT);
 pinMode(grnled, OUTPUT);

84 Make: Basic Arduino Projects

Something to Think About
Are there common cathode RGB LEDs? If so, what Arduino microcontroller wiring
changes are needed to operate them correctly?

86 Make: Basic Arduino Projects

Figure 10-2. The Magic Light Bulb Fritzing diagram

Upload the Magic Light Bulb Sketch
With the Magic Light Bulb circuit built on the MakerShield, it’s time to upload the
sketch. Example 10-1 operates the RGB LEDs using a mini pushbutton switch. Here
are the steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 10-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

4. Press the mini pushbutton switch for a moment.

The Arduino will sequence the RGB LED tricolor pattern three times. Figure 10-3
shows the Magic Light Bulb in action.

Chapter 10: The Magic Light Bulb 89

Figure 10-3. The Magic Light Bulb running through the tricolor pattern

Example 10-1. The Magic Light Bulb sketch

/*

 Magic Light Bulb

 Flashes the red, green, and blue LEDs of an RGB LED three times by
 briefly pressing a mini pushbutton switch.

 25 Feb 2013
 Don Wilcher

 */

// Pushbutton switch and RGB pins wired to the Arduino microcontroller.
// give them names:
int redled = 9;
int grnled = 10;
int bluled = 11;
int Pbutton = 8;
// initialize counter variable
 int n =0;
// monitor pushbutton switch status:
int Pbuttonstatus = 0;

// the setup routine runs once when you press reset:
void setup() {
// initialize the digital pins as outputs:
 pinMode(redled, OUTPUT);
 pinMode(grnled, OUTPUT);
 pinMode(bluled, OUTPUT);
// initialize the digital pin as an input:

90 Make: Basic Arduino Projects

Figure 10-5. The Magic Light Bulb circuit schematic diagram

Chapter 10: The Magic Light Bulb 93

Figure 11-1. The Metal Checker device

Let’s Build a Metal Checker
The Metal Checker is a cool electronics device to build with an Arduino and elec-
tronic parts from the Ultimate Microcontroller Pack. You can build the electronic
circuit on an ordinary breadboard or the MakerShield. Building the Metal Checker
on the MakerShield allows the device to fit nicely inside a Maker’s toolbox or work-
bench drawers. Also, the MakerShield is small enough to carry with you in the field
for scientific metal checking activities. Figure 11-2 provides a Fritzing diagram for
building the Metal Checker.

96 Make: Basic Arduino Projects

The Arduino will turn on the piezo buzzer. Now you’re ready to unlock the metal
mysteries hiding in your house!

Example 11-1. The Metal Checker sketch

/*
 Metal Checker

 Turns on and off a piezo buzzer at pin 7 when metal is placed across
 the sense wires of the metal sensor circuit attached to pin 6.

 The circuit:
 * Piezo buzzer attached from pin 7 to ground
 * Metal Checker sensor attached to pin 7
 * 1KΩ fixed resistor attached from pin 6 to ground

 March 2013
 by Don Wilcher

*/

// set pin numbers:
const int MSensePin = 6; // the number of the metal sense pin
const int PBuzzerPin = 7; // the number of the piezo buzzer pin

// variables will change:
int MetalStatus = 0; // variable for the metal sense status

void setup() {
 // initialize the LED pin as an output:
 pinMode(PBuzzerPin, OUTPUT);
 // initialize the pushbutton pin as an input:
 pinMode(MSensePin, INPUT);
}

void loop(){
 // read the state of the metal sense value:
 MetalStatus = digitalRead(MSensePin);

 // check if metal is present
 // if it is, the MetalStatus is HIGH:
 if (MetalStatus == HIGH) {
 // turn piezo buzzer on:
 digitalWrite(PBuzzerPin, HIGH);
 }
 else {
 // turn MetalStatus off:
 digitalWrite(PBuzzerPin, LOW);
 }
}

Chapter 11: Metal Checker: The Electronic Switch 99

Figure 12-1. The Theremin

Let’s Build a Theremin
The Theremin, invented in 1920 by Russian inventor Leon Theremin, uses an elec-
tronic circuit called an oscillator to create different sounds. In our Theremin, we’re
using the Arduino as an oscillator by programming it to select different tones based
on changing light levels. The tone changes are made by waving your hand over a
photocell, creating various sounds based on changing light levels. The circuit is built
on a breadboard with electronic components from the Ultimate Microcontroller
Pack, as just shown in the Parts List. Although the Theremin can be built on an
ordinary breadboard, the MakerShield makes the device small enough to carry in a
shirt pocket or Maker bag. Figure 12-2 shows a Fritzing diagram of the Theremin.
Also, the actual mini 8Ω speaker used in the Theremin project is shown in Figure 12-3.

104 Make: Basic Arduino Projects

Figure 12-2. The Theremin Fritzing diagram

The electronic sounds generated by the Arduino are wired to a simple transistor
amplifier. Pay close attention to the 100 uF electrolytic capacitor’s orientation
(shown on the Fritzing diagram) to prevent damage to the Arduino. Also, the NPN
transistor’s pinout for either a 2N3904 or S9013 electronic component is shown on
the Fritzing diagram’s breadboard. The mini 8Ω speaker color wire leads must be
connected correctly (as shown in Figure 12-2) in order for the audio electronic
sounds to be heard through it.

Chapter 12: The Theremin 105

Circuit Theory
The 2N3904 or S39013 NPN transistor amplifies or increases the audio signal created
by the Arduino. The transistor has an amplification value called “gain” used to de-
termine the volume of an electrical signal. A typical gain value engineers use in
designing simple amplifiers like this one is 100. The mini 8Ω speaker can be wired
directly to pin D9 with a reasonable amount of volume, but the simple transistor
amplifier increases the sound by a factor of 100, making the Theremin sound louder.

The block diagram in Figure 12-5 shows the building blocks and the electrical signal
flow for the Theremin. A Fritzing software circuit schematic diagram of the Theremin
is shown in Figure 12-6. As a reminder, circuit schematic diagrams use electrical
symbols for electronic components and are abbreviated drawings of Fritzing
diagrams.

Figure 12-5. The Theremin block diagram

Figure 12-6. The Theremin circuit schematic diagram

Chapter 12: The Theremin 109

Something to Think About
What sounds would be emitted by the Theremin’s simple transistor amplifier if the
mini 8Ω speaker was replaced with a piezo buzzer? Try it!

110 Make: Basic Arduino Projects

Figure 13-1. An Arduino Ohmmeter

Let’s Build an Arduino Ohmmeter
This gadget tests the resistance of electrical components. Place the unknown resis-
tor you want to test in series with the reference resistor R1 connected to GND. The
Arduino will calculate the resistance and display it on the Serial Monitor. The resist-
ance of other electrical objects can be measured with the Arduino Ohmmeter as
well. Building the Arduino Ohmmeter on a MakerShield protoboard makes the de-
vice small enough to carry to a friend’s house to check his electronic projects.
Figure 13-2 shows the Fritzing diagram for the Arduino Ohmmeter.

112 Make: Basic Arduino Projects

Figure 13-2. An Arduino Ohmmeter Fritzing diagram

Upload the Arduino Ohmmeter Sketch
It’s time to upload the Ohmmeter sketch to the Arduino. Example 13-1 reads the
resistance of R2, and reports the result through the serial display. Here are the steps
you’ll need to take:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 13-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Ohmmeter sketch has been uploaded to the Arduino, place the unknown
resistor (shown as R2 on the Frizting diagram) you want to test in series with the
reference resistor R1 (1KΩ) connected to GND. The voltage across the R2 resistor
and its resistance value will be displayed on the Serial Monitor. Figure 13-3 shows
the output voltage (Vout) and the measured resistance of a 1KΩ resistor (R2) being
displayed on the Serial Monitor.

Chapter 13: An Arduino Ohmmeter 113

Figure 13-3. R2 and Vout measured and displayed on the Serial Monitor

Example 13-1. The Arduino Ohmmeter sketch

/*
 Arduino Ohmmeter

 */

// set up pins on Arduino for LED and test lead
int analogPin = 0; // reads the resistance of R2
int raw = 0; // variable to store the raw input value
int Vin = 5; // variable to store the input voltage
float Vout = 0; // variable to store the output voltage
float R1 = 1000; // variable to store the R1 value
float R2 = 0; // variable to store the R2 value
float buffer = 0; // buffer variable for calculation

void setup()
{
 Serial.begin(9600); // Set up serial

}

void loop()
{
 raw = analogRead(analogPin); // reads the input pin
 if(raw)
 {

114 Make: Basic Arduino Projects

Figure 13-4. An Arduino Ohmmeter circuit schematic diagram

116 Make: Basic Arduino Projects

Figure 14-1. The LCD News Reader

Let’s Build the LCD
The first task in building the LCD News Reader is to solder a 16-pin male header to
the LCD. The Ultimate Microcontroller Pack has several male headers for building
your own Arduino shields. The header needs to be cut to a length to match the 16
LCD copper pad holes. Figure 14-2 shows the male header cut to the appropriate
LCD length. Insert the 16-pin male header through the copper pad holes and solder
them one by one to the LCD printed circuit board (PCB). Figure 14-3 shows the male
header soldered onto the LCD PCB.

Place the LCD onto the solderless breadboard, as shown in Figure 14-4. Wire LCD
pin number “1” to ground and “2” to +5VDC. Attach the center pin of the 10KΩ
potentiometer to pin number “3” of the LCD. Wire the remaining 10KΩ potentiom-
eters pins to +5VDC and ground as shown in the diagram. With the LCD wired to
the solderless breadboard, apply power to it using the Arduino. Adjust the 10KΩ
potentiometer until the LCD’s top row displays pixel squares, as shown in
Figure 14-4. Complete the rest of the tester wiring using the Fritzing diagram shown
in Figure 14-5.

120 Make: Basic Arduino Projects

Figure 14-5. The LCD News Reader Fritzing diagram

Example 14-1. The LCD News Reader sketch

/*
 The LCD News Reader

 20 August 2013

 */

// include the LCD library code:
#include <LiquidCrystal.h>

// set up pins on Arduino for LCD and test lead
LiquidCrystal lcd(12,11,5,4,3,2);

// set up the LCD's number of columns and rows

#define Xdelay 1900

String a;
String b;
String c;
String d;

Chapter 14: The LCD News Reader 123

void setup() {
 lcd.begin(16,2);
 lcd.setCursor(0,0);

 clearLCD();
 backlightOn();

 lcd.print("HELLO, WORLD!");
 delay(Xdelay);

}

void loop()
{

 char databuff[16];
 char dispbuff[16];

 // display on/off test
 for(int x = 5; x>0; x--)
 {
 delay(1000);
 displayOff();
 delay(1000);
 displayOn();
 }

 clearLCD();
 backlightOn();
 lcd.print("SLOW FADE ");
 fadeOut(100);
 fadeIn(10);

 // light up all segments as a test

 lcd.print("0123456789abcdef");
 delay(Xdelay);
 lcd.print("ghijklmnopqrstuv");
 delay(Xdelay);
 lcd.print("wxyz +?*&%$#()!=");
 delay(Xdelay);
 lcd.print(" ");
 delay(Xdelay);
 lcd.print(" ");
 delay(Xdelay);

 a = "0123456789abcdef";
 b = "ghijklmnopqrstuv";
 c = "wxyz +?*&%$#()!=";
 d = " ";

124 Make: Basic Arduino Projects

 selectLineTwo();
 lcd.print(a);
 delay(Xdelay);

 selectLineOne();
 lcd.print(a);
 selectLineTwo();
 lcd.print(b);
 delay(Xdelay);

 selectLineOne();
 lcd.print(b);
 selectLineTwo();
 lcd.print(c);
 delay(Xdelay);

 selectLineOne();
 lcd.print(c);
 selectLineTwo();
 lcd.print(d);
 delay(Xdelay);

 selectLineOne();
 lcd.print(d);
 selectLineTwo();
 lcd.print(d);
 delay(Xdelay);

 for (int x = 0; x<=5; x++)
 {
 for(int i = 15; i>=0; i--)
 {
 goTo(i);
 if (i%4 == 1)
 lcd.print("- ");
 if (i%4 == 2)
 lcd.print("I ");
 if (i%4 == 3)
 lcd.print("- ");
 if (i%4 == 0)
 lcd.print("I ");
 delay(100);
 }
 for(int i =0; i<=14; i++)
 {
 goTo(i);
 lcd.print(" @");
 delay(100);
 }
 }

 clearLCD();
}

Chapter 14: The LCD News Reader 125

void selectLineOne()
{
 lcd.write(0xFE); //command flag
 lcd.write(128); //position
 delay(10);
}
void selectLineTwo()
{
 lcd.write(0xFE); //command flag
 lcd.write(192); //position
 delay(10);
}
void goTo(int position)
{
if (position<16)
 {
 lcd.write(0xFE); //command flag
 lcd.write((position+128)); //position
 }else if (position<32)
 {
 lcd.write(0xFE); //command flag
 lcd.write((position+48+128)); //position
} else { goTo(0); }
 delay(10);
}

void clearLCD()
{
 lcd.write(0xFE); //command flag
 lcd.write(0x01); //clear command
 delay(10);
}
void backlightOn()
{
 lcd.write(0x7C); //command flag for backlight stuff
 lcd.write(157); //light level
 delay(10);
}
void backlightOff()
{
 lcd.write(0x7C); //command flag for backlight stuff
 lcd.write(128); //light level for off
 delay(10);
}

void backlightValue(int bv)
{
 int val = bv;
 if (bv < 128) val= map(bv, 0, 1023, 128, 157);
 if (bv > 157) val = map(bv, 0, 1023, 128, 157);

 lcd.write(0x7C); //command flag for backlight stuff
 lcd.write(val); //light level
 delay(10);

126 Make: Basic Arduino Projects

}

void displayOn()
{
 lcd.write(0xFE); //command flag
 lcd.write(0x0C); //clear command
 delay(10);
}

void displayOff()
{
 lcd.write(0xFE); //command flag
 lcd.write(0x08); //clear command
 delay(10);
}

void fadeOut(int fade)
{
 for (int x = 157; x>128; x--)
 {
 backlightValue(x);
 delay(fade);
 }
}

void fadeIn(int fade)
{
 for (int x = 128; x<=157; x++)
 {
 backlightValue(x);
 delay(fade);
 }
}

Chapter 14: The LCD News Reader 127

Figure 14-7. The LCD News Reader block diagram

Figure 14-8. The LCD News Reader circuit schematic diagram

Something to Think About
How can a pushbutton switch be used to control the display?

Chapter 14: The LCD News Reader 129

Figure 15-2. Fritzing diagram for a logic tester with an RGB LED

Upload the Logic Tester Sketch
With the Logic Tester built, it’s time to upload the sketch. As shown in
Example 15-1, the sketch operates an RGB LED using a pushbutton switch and two
fixed resistors. Here are the steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 15-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Logic Tester sketch has been uploaded to the Arduino microcontroller, the
RGB’s red LED will be on, as shown in Figure 15-1. Attaching the long test wire to
the +5VDC source on the MakerShield and pressing the pushbutton switch will allow
the RGB green LED to turn on, as shown in Figure 15-3.

Example 15-1. The Logic Tester sketch

/*
 Logic Tester with RGB LED

 Turns on the green LED when a logic "1" (+5V) signal is detected. The
 red LED will turn on at logic "0" (0V) signal. Also, when powering
 up the Arduino the red LED is on.

 4 May 2013
 Don Wilcher

 */

Chapter 15: A Logic Tester (with an RGB LED) 133

Figure 15-5. The Logic Tester Fritzing circuit schematic diagram

Something to Think About
How can the Logic Tester be operated without a pushbutton switch?

136 Make: Basic Arduino Projects

Figure 16-1. A Logic Tester with an LCD

Let’s Build a Logic Tester
Building this tester requires the use of an LCD. If this is your first time using an LCD,
I suggest reading Chapter 14. For help adding the 16-pin male header to the LCD,
see Figure 14-2 and Figure 14-3. The 10KΩ potentiometer’s center pin is wired to
pin number 3 of the LCD. The potentiometer’s remaining pins should be wired to
+5VDC and ground. Place the LCD onto the solderless breadboard, as shown in
Figure 16-2. LCD pin numbers 1 and 2 are wired to ground and +5VDC, respectively.
Adjust the 10KΩ potentiometer contrast control for the LCD for proper pixel-square
visibility. For reference on how to do this, see Figure 14-4.

Complete the rest of the tester wiring using the Fritzing diagram shown in
Figure 16-2.

138 Make: Basic Arduino Projects

+5V source, as shown in Figure 16-3. Impress the local Makerspace by testing Ar-
duino and digital electronic circuits with your Logic Tester!

Example 16-1. The Logic Tester sketch

/*
 Logic Tester
 LCD displays "HIGH (1)" when digital circuit signal is +5V. A "LOW (0)"
 is displayed when digital circuit signal is OV.

 27 April 2013
 Don Wilcher

 */

// include the LCD library code:
#include <LiquidCrystal.h>

// set up pins on Arduino for LCD and transistor lead:
LiquidCrystal lcd(12,11,5,4,3,2);
int xistorPin = 6;
int digitalStatus = 0; // variable for reading the digital circuit state

// initialize the transistor pin as an input and set up the LCD's number
// of columns and rows:
void setup() {
 lcd.begin(16,2);
 lcd.setCursor(0,0);
 lcd.print("LOGIC TESTER");
 pinMode(xistorPin, INPUT);

}

void loop() {
 // check if digital signal is HIGH or LOW:
digitalStatus = digitalRead(xistorPin);
if (digitalStatus == HIGH) {
 // if digital circuit signal is +5V, display HIGH (1):
 lcd.setCursor(0,1);
 lcd.print("HIGH (1) "); // display HIGH (1)
}
else {
 // if digital circuit signal is 0V, display LOW (0):
 lcd.setCursor(0,1);
 lcd.print(" LOW (0) ");
 }
}

140 Make: Basic Arduino Projects

Figure 17-1. The Amazing Pushbutton

Let’s Build an Amazing Pushbutton
Building the Amazing Pushbutton requires the use of a USB cable to send digital
information from the Arduino to a computer screen. As shown in Figure 17-1, the
device is quite simple to build, using only a 1KΩ fixed resistor and a pushbutton
switch. The two components are connected in series. Where the two electronic
components tie together, a jumper wire connects between them and pin D7 of the
Arduino microcontroller.

Complete the rest of the Amazing Pushbutton wiring using the Fritzing diagram
shown in Figure 17-2. The placement of the parts is not critical, so experiment with
the locations of the electronic components and electrical wiring of the device. Al-
though a mini breadboard is shown in the Fritzing diagram, the MakerShield pro-
toboard provides a compact way to wire the device.

144 Make: Basic Arduino Projects

Upload the Amazing Pushbutton
Sketch
With the Amazing Pushbutton built, it’s time to upload the sketch. Example 17-1
sends digital information to the Arduino IDE (integrated development environment)
Serial Monitor and turns the onboard LED on and off with each press of the push-
button switch. Here are the steps you’ll need to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 17-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Example 17-1. The Amazing Pushbutton sketch

/*
* The Amazing Pushbutton
*
* Reads a digital input from a pushbutton switch and sends the letter
* L or H to the Serial Monitor.
*
*
*/

// variables for input pin and control LED
 int digitalInput = 7;
 int LEDpin = 13;

// variable to store the value
 int value = 0;

void setup(){

// declaration pin modes
 pinMode(digitalInput, INPUT);
 pinMode(LEDpin, OUTPUT);

// begin sending over serial port
 Serial.begin(9600);
}

void loop(){
// read the value on digital input
 value = digitalRead(digitalInput);

// write this value to the control LED pin
digitalWrite(LEDpin, value);

// if value is high then send the letter 'H'; otherwise, send 'L' for low
if (value) Serial.print('H');

146 Make: Basic Arduino Projects

 else
 Serial.print('L');

 // wait a bit to not overload the port
 delay(10);
}

Once the Amazing Pushbutton sketch has been uploaded to the Arduino, the Serial
Monitor will display “L” repeatedly in a row, as shown in Figure 17-3. Press the push-
button switch, and the Serial Monitor displays “H” repeatedly in a row (see
Figure 17-4).

Figure 17-3. L’s being displayed on the Arduino Serial Monitor

Chapter 17: The Amazing Pushbutton (with Processing) 147

Figure 17-4. H’s being displayed on the Arduino Serial Monitor

Download and Install Processing Notes
Before building this awesome visual Arduino Microcontroller project, you have to
install the Processing programming language on your computer. Here are the in-
stallation instructions:

1. Go to the Processing download web page.

2. Select the software that meets your operating system’s requirements.

3. Once the Processing software has been downloaded to your hard drive, follow
the prompts to complete the installation process.

After installing the Processing programming language onto your computer, you’re
now ready to build the visualization software for the Amazing Pushbutton device!

Let’s Visualize Digital Data with
Processing
The characters “L” and “H” are an interesting way to represent the information you
get when the pushbutton turns on and off. But if we really want to see the “magic”
of the pushbutton, we’ll need to use a graphical software language called
Processing. Processing software allows digital information (actually, just about any
kind of information) to be changed into computer graphics quite easily.

148 Make: Basic Arduino Projects

*
*
*/

// importing the processing serial class
import processing.serial.*;

// the display item draws background and grid
 DisplayItems di;

// definition of window size and framerate
 int xWidth = 512;
 int yHeight = 512;
 int fr = 24;

// attributes of the display
 boolean bck = true;
 boolean grid = true;
 boolean g_vert = false;
 boolean g_horiz = true;
 boolean g_values = true;
 boolean output = false;

// variables for serial connection, portname, and baudrate have to be set
 Serial port;
 int baudrate = 9600;
 int value = 0;

// variables to draw graphics
 int actVal = 0;
 int num = 6;
 float valBuf[] = new float[num];
 int i;

// lets user control DisplayItems properties and value output in console
void keyPressed(){
 if (key == 'b' || key == 'B') bck=!bck; // background black/white
 if (key == 'g' || key == 'G') grid=!grid; // grid on/off
 if (key == 'v' || key == 'V') g_values=!g_values; // grid values on/off
 if (key == 'o' || key == 'O') output=!output; // turns value output on/off
}

void setup(){
 // set size and framerate
 size(xWidth, yHeight); frameRate(fr);

 // establish serial port connection
 // The "2" corresponds to the 3rd port (counting from 0) on the Serial
 // Port list dropdown. You might need to change the 2 to something else.
 String portname =Serial.list()[2];
 port = new Serial(this, portname, baudrate);
 println(port);

 // create DisplayItems object
 di = new DisplayItems();

150 Make: Basic Arduino Projects

 // clear value buffer
 for(i=0; i < num; i++) {
 valBuf[0] = 0;
 }

}

void drawPushButtonState(){
 // read through the value buffer
 // and shift the values to the left
 for(i=1; i < num; i++) {
 valBuf[i-1] = valBuf[i];
 }
 // add new values to the end of the array
 valBuf[num-1] = actVal;
 noStroke();
 // reads through the value buffer and draws lines
 for(int i=0; i < num; i=i+2) {
 fill(int((valBuf[i]*255)/height), int((valBuf[i]*255)/height) , 255);
 rect(0, height-valBuf[i], width, 3);
 fill(int((valBuf[i+1]*255)/height), 255, 0);
 rect(0, height-valBuf[i+1], width, 3);
 }
 // display value
 fill(((bck) ? 185 : 75));
 text(""+(actVal), 96, height-actVal);
}

void serialEvent(int serial){
 // if serial event is 'H' actVal is increased
 if(serial=='H') {
 actVal = (actVal < height - (height/16)) ?
 (actVal + int(actVal/(height/2))+1) :
 (actVal = height - (height/(height/2)));

 if (output)
 println("Value read from serial port is 'H' - actualValue is now "
 + actVal);
 } else {
 // if serial event is 'L' actVal is decreased
 actVal = (actVal > 1) ?
 (actVal = actVal - int(actVal/64)-1) :
 (actVal=0);
 if (output)
 println("Value read from serial port is 'L' - actualValue is now "
 + actVal);
 }
}

void draw(){
 // listen to serial port and trigger serial event
 while(port.available() > 0){
 value = port.read();
 serialEvent(value);

Chapter 17: The Amazing Pushbutton (with Processing) 151

 }
 // draw background, then PushButtonState and
 // finally rest of DisplayItems
 di.drawBack();
 drawPushButtonState();
 di.drawItems();
}

Next, we need to use the DisplayItems sketch to display the interactions with the
Arduino on your screen. To do this, you need to open a new tab in the Processing
IDE for the DisplayItems sketch. Enter Example 17-3 into the new tab in the Pro-
cessing IDE text editor.

Example 17-3. The DisplayItems Processing sketch

/*
* DisplayItems
*
* This class draws background color, grid and value scale
* according to the boolean variables in the pa_file.
*
* This file is part of the Arduino meets Processing Project.
* For more information visit http://www.arduino.cc.
*
* created 2005 by Melvin Ochsmann for Malmo University
*
*/

class DisplayItems{

// variables of DisplayItems object
PFont font;
int gridsize;
int fontsize = 10;
String fontname = "Monaco-14.vlw";
String empty="";
int i;

// constructor sets font and fontsize
DisplayItems(){
 font = loadFont(fontname);
 gridsize = (width/2)/16+(height/2)/16;
 if(gridsize > 20) fontsize = 14;
 if(gridsize > 48) fontsize = 22;
 textFont(font, fontsize);
}

// draws background
void drawBack(){
 background((bck) ? (0) : (255));
}

// draws grid and value scale
void drawItems(){

152 Make: Basic Arduino Projects

Figure 17-7. The Amazing Pushbutton block diagram

Troubleshooting Tips for Processing
As in all Maker projects, a bug can occasionally creep in. Processing is an awesome
software package for developing cool Arduino microcontroller projects, but it can
be challenging to use. Here are a few troubleshooting tips for the most common
problems that can occur:

• Make sure the Arduino microcontroller is communicating with the Processing
software through USB connection. If the Arduino is not attached to the Pro-
cessing software, it may cause communication errors.

• Make sure the Amazing Pushbutton sketch is running on Arduino before start-
ing the Processing sketch. If the Processing software is unable to obtain data
from the Arduino microcontroller (because it wasn’t running), it will generate
an “unrecognized device error.”

• Make sure text for both the Arduino and Processing sketches is typed correctly
as shown in the software listings. Most of the software bugs are caused by
syntax or incorrectly typed code for both programming languages.

Following these three guidelines should minimize your frustration when it comes
to debugging the Amazing Pushbutton device project build.

Chapter 17: The Amazing Pushbutton (with Processing) 155

Figure 17-8. The Amazing Pushbutton Fritzing circuit schematic diagram

Something to Think About
How can the letters “L” and “H” in Figure 17-3 and Figure 17-4 be replaced with the
numbers “0” and “1”?

156 Make: Basic Arduino Projects

Figure 18-1. The Terrific Tilt Switch

Let’s Build a Terrific Tilt Switch
The Terrific Tilt Switch, like the Amazing Pushbutton, requires a USB cable to send
digital information from the switch to the computer screen. As shown in
Figure 18-1, the device is quite simple to build: it requires just a 1KΩ fixed resistor
and a tilt switch. The two components are connected in series like the Amazing
Pushbutton device. Where the two components tie together, a jumper wire connects
between them and pin D7 of the Arduino microcontroller.

The Terrific Tilt Switch can be built using the Fritzing wiring diagram shown in
Figure 18-2. The placement of the parts is not critical, so have some fun placing the
components in different places. Although the Fritzing diagram shows a mini bread-
board, feel free to use the MakerShield protoboard if you want.

158 Make: Basic Arduino Projects

Figure 18-2. The Terrific Tilt Switch Fritzing wiring diagram

Upload the Terrific Tilt Switch Sketch
It’s time to upload the Arduino sketch for the Terrific Tilt Switch. Example 18-1 takes
information from the tilt switch and sends it to the Arduino IDE (integrated devel-
opment environment) Serial Monitor, displaying a series of the characters “H” and
“L” with each rotation of the tilt switch.

Did you notice that parts of the program look like the listing shown in Chapter 17?
That’s because the serial communication technique—the part of the code that lets
the Arduino talk with Processing—remains the same no matter what the Arduino

Chapter 18: The Terrific Tilt Switch (with Processing) 159

is using as input or how Processing displays the data. Here are the steps you’ll need
to follow:

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 18-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Terrific Tilt Switch sketch has been uploaded to the Arduino, the Serial
Monitor will display “L” repeatedly in a row, as shown in Figure 18-3. If you tilt the
switch, the Serial Monitor will display “H” repeatedly (see Figure 18-4).

Figure 18-3. L’s being displayed on the Arduino Serial Monitor

160 Make: Basic Arduino Projects

Figure 18-4. H’s being displayed on the Arduino Serial Monitor

Example 18-1. The Terrific Tilt Switch sketch

/*
* The Terrific Tilt Switch
*
* Reads a digital input from a tilt switch and sends a series of
* L's or H's to the Serial Monitor.
*
*
*/

// variables for input pin and control LED
 int digitalInput = 7;
 int LEDpin = 13;

// variable to store the value
 int value = 0;

void setup(){

// declaration pin modes
 pinMode(digitalInput, INPUT);
 pinMode(LEDpin, OUTPUT);

// begin sending over serial port
 Serial.begin(9600);
}

Chapter 18: The Terrific Tilt Switch (with Processing) 161

 boolean g_values = false;
 boolean output = true;

 Serial port;

 // The "2" corresponds to the 3rd port (counting from 0) on the Serial
 // Port list dropdown. You might need to change the 2 to something else.
 String portname = Serial.list()[2];
 int baudrate = 9600;
 int value = 0;
 boolean tilted = true;
 float a = 0;
 int speed = 5; // how many pixels that the circle will move per frame

void keyPressed(){

 if (key == 'b' || key == 'B') bck=!bck;
 if (key == 'g' || key == 'G') grid=!grid;
 if (key == 'v' || key == 'V') g_values=!g_values;
 if (key == 'o' || key == 'O') output=!output;
}

void setup(){

 size(xWidth, yHeight);
 frameRate(fr);

 di = new DisplayItems();

 port = new Serial(this, portname, baudrate);
 println(port);
}
// Method moves the circle from one side to another,
// keeping within the frame
void moveCircle(){

 if(tilted) {
 background(0);

 a = a + speed;
 if (a > (width-50)) {
 a = (width-50);
 }
 ellipse(a, (width/2), 100,100);

 }else{
 background(0);

 a = a - speed;
 if (a < 50) {
 a = 50;
 }
 ellipse(a, (width/2), 100,100);

 }

Chapter 18: The Terrific Tilt Switch (with Processing) 163

 }

void serialEvent(int serial){
 if(serial=='H') {
 tilted = true;
 if(output) println("High");

 }else {
 tilted = false;
 if(output) println("Low");
 }
}

void draw(){

 while(port.available() > 0){
 value = port.read();
 serialEvent(value);
 }

 di.drawBack();

 moveCircle();

 di.drawItems();

}

Figure 18-5. An interactive (moving) white-filled circle created in Processing

164 Make: Basic Arduino Projects

The block diagram in Figure 18-7 shows the electronic component blocks and the
data flow for the Terrific Tilt Switch. A Fritzing electronic circuit schematic diagram
of the Terrific Tilt Switch is shown in Figure 18-8.

Figure 18-7. The Terrific Tilt Switch block diagram

Something to Think About
How can an external LED be wired to the MakerShield protoboard to visually rep-
resent the state of the tilt switch (just like the letters “L” and “H” do in the Serial
Monitor)?

Chapter 18: The Terrific Tilt Switch (with Processing) 167

Figure 18-8. The Terrific Tilt Switch Fritzing circuit schematic diagram

168 Make: Basic Arduino Projects

Figure 19-1. The Rocket Launcher

Let’s Build a Rocket Game
The Rocket Game, like the projects in Chapter 17 and Chapter 18, requires the use
of a USB cable to send digital information from four pushbutton switches to the
computer screen. As shown in Figure 19-1, the breadboard circuit is quite simple to
build and requires five 1KΩ fixed resistors and four pushbutton switches.

The basic digital circuit consists of a pushbutton switch and resistor wired in series.
This wiring connection is repeated three times for the remaining switches. These
switches are connected to pins D3 through D7 of the Arduino microcontroller.

The Rocket Game can be built using the Fritzing wiring diagram shown in
Figure 19-2. The placement of the parts is not critical, so experiment with the location
of the various electronic components, and the overall wiring of the device. One
challenge is to wire all of the electronic components using the awesome (but kind
of small) MakerShield protoboard. Can you fit it all on there?

170 Make: Basic Arduino Projects

Example 19-1. The MultiDigital4 sketch

/*
* MultiDigital4
*
* Reads 8 digital inputs and sends their values over the serial port.
* A byte variable is used to store the state of all eight pins. This byte
* is then sent over the serial port.
*
* modified ap_ReadDigital8 sketch by Melvin Oschmann
*
* 8 June 2013
* Don Wilcher
*
*/

// 8 variables for each pin
 int digitalInput_1 = 3;
 int digitalInput_2 = 4;
 int digitalInput_3 = 5;
 int digitalInput_4 = 6;
 int digitalInput_5 = 7;
 int digitalInput_6 = 8;
 int digitalInput_7 = 9;
 int digitalInput_8 = 10;

// 8 variables to store the values
 int value_1 = 0;
 int value_2 = 0;
 int value_3 = 0;
 int value_4 = 0;
 int value_5 = 0;
 int value_6 = 0;
 int value_7 = 0;
 int value_8 = 0;

// byte variable to send state of all pins over serial port
 int myByte = 0;

// control LED
 int controlLED = 13;

void setup(){

// set pin modes
 pinMode(digitalInput_1, INPUT); pinMode(digitalInput_2, INPUT);
 pinMode(digitalInput_3, INPUT); pinMode(digitalInput_4, INPUT);
 pinMode(digitalInput_5, INPUT); pinMode(digitalInput_6, INPUT);
 pinMode(digitalInput_7, INPUT); pinMode(digitalInput_8, INPUT);

 pinMode(controlLED, OUTPUT);

// begin sending out over the serial port
 Serial.begin(9600);

Chapter 19: The Rocket Launching Game (with Processing) 173

}

void loop(){

// set 'myByte' to zero
 myByte = 0;

// then read all the INPUTS and store values
// in the corresponding variables
 value_1 = digitalRead(digitalInput_1);
 value_2 = digitalRead(digitalInput_2);

 value_3 = digitalRead(digitalInput_3);
 value_4 = digitalRead(digitalInput_4);

 value_5 = digitalRead(digitalInput_5);
 value_6 = digitalRead(digitalInput_6);

 value_7 = digitalRead(digitalInput_7);
 value_8 = digitalRead(digitalInput_8);

/* check if values are high or low and 'add' each value to myByte
* what it actually does is this:
*
* 00 00 00 00 ('myByte set to zero')
* | 00 10 10 00 ('3 and 5 are 1')
* --------------
* 00 10 10 00 ('myByte after logical operation')
*
*/

 if (value_1) {
 myByte = myByte | 0;
 digitalWrite(controlLED, HIGH);
 } else digitalWrite(controlLED, LOW);

 if (value_2) { myByte = myByte | 1; }
 if (value_3) { myByte = myByte | 2; }
 if (value_4) { myByte = myByte | 4; }
 if (value_5) { myByte = myByte | 8; }
 if (value_6) { myByte = myByte | 16; }
 if (value_7) { myByte = myByte | 32; }
 if (value_8) { myByte = myByte | 64; }

// send myByte out over serial port and wait a bit to not overload the port
 Serial.print(myByte);
 delay(10);
}

The Rocket Launcher with Processing
The numbers from the MultiDigital4 sketch will be interpreted by Processing and
used to drive a cool graphics screen, with color numbers and text. The layout of the
Processing canvas is similar to the projects in Chapter 17 and Chapter 18 (with

174 Make: Basic Arduino Projects

obvious differences in text and animation). After uploading the Rocket Game sketch
to the Arduino, a jumbled blob of text and numbers along with a numbered grid
will be displayed on your computer screen, as shown in Figure 19-4. If you look
closely, you can see the word “rocket” repeated several times on the screen. Pressing
pushbutton 1 will show the rocket launcher in action, as the text and associated
number begin to rise on the numbered grid. Figure 19-5 shows an example of a
virtual rocket being launched into the sky! Releasing the pushbutton allows the
rocket to fall nicely back to earth.

Figure 19-4. A blob of text and numbers

Chapter 19: The Rocket Launching Game (with Processing) 175

Figure 19-5. Rocket 3 being launched into the sky

Another cool feature of the Rocket Game Processing sketch (Example 19-2) is the
Console Monitor located below the numbered grid. The Console Monitor displays
the binary status of the pushbuttons and launched rockets. As shown in
Figure 19-5, one of the pushbuttons has a binary status of 1, while the other three
pushbuttons show a binary status of 0. From that, can you deduce which pushbutton
has been pressed?

The Console Monitor can also be used as a sketch debugging tool when developing
graphics, animation, and Arduino applications.

176 Make: Basic Arduino Projects

 int fontsize2 = 72; // change size of text on screen
 PFont font2;
 float valBuf[] = new float[8];
 int xpos, ypos;

// lets user control DisplayItems properties and value output in console
void keyPressed(){
 if (key == 'b' || key == 'B') bck=!bck; // background black/white
 if (key == 'g' || key == 'G') grid=!grid; // grid on/off
 if (key == 'v' || key == 'V') g_values=!g_values; // grid values on/off
 if (key == 'o' || key == 'O') output=!output; //turns value output on/off
}

void setup(){
 // set size and framerate
 size(xWidth, yHeight); frameRate(fr);
 // establish serial port connection
 port = new Serial(this, portname, baudrate);
 println(port);
 // create DisplayItems object
 di = new DisplayItems();
 // load second font for graphical representation and clear value buffer
 font2 = loadFont(fontname2);
 for(i = 0; i < valBuf.length; i++){
 valBuf[i] = (height/2);
 }
}

void drawFourSwitchesState(){
 textFont(font2, fontsize2);
 if (output) print("4Switches Statuses: ");

 // takes value, interprets it as a byte
 // and reads each bit
 for (i=0; i < 4 ; i++){

 if(output) print(value & 1);
 print("ROCKET!");

 // if a bit is 1, increase the corresponding value in value buffer
 // array by 1
 if ((value & 1) == 1){ // if 0, number drops when pushbutton is
 // pressed; if 1, number goes up when
 // pushbutton is pressed

 if(valBuf[i] > fontsize2) valBuf[i] -=1;
 // if a bit is 0, decrease corresponding value
 }else{
 if(valBuf[i] < height) valBuf[i] += 1;
 }

 if(output)
 print(".");

 // draw number for each value at its current height

178 Make: Basic Arduino Projects

*/

class DisplayItems{

// variables of DisplayItems object
PFont font;
int gridsize;
int fontsize = 10;
String fontname = "Monaco-14.vlw";
String empty="";
int i;

// constructor sets font and fontsize
DisplayItems(){
 font = loadFont(fontname);
 gridsize = (width/2)/16+(height/2)/16;
 if(gridsize > 20) fontsize = 14;
 if(gridsize > 48) fontsize = 22;
}

// draws background
void drawBack(){
 background((bck) ? (0) : (255));
}

// draws grid and value scale
void drawItems(){
 textFont(font, fontsize);

 if(grid){ stroke((bck) ? (200) : (64));
 fill((bck) ? (232) : (32));

 // vertical lines
 if(g_vert){
 for (i=0; i < width; i+=gridsize){
 line(i, 0, i, height);
 textAlign(LEFT);
 if (g_values &&
 i%(2*gridsize)==0
 && i < (width-(width/10)))
 text(empty+i, (i+fontsize/4), 0+fontsize);
 }}

 // horizontal lines
 if(g_horiz){
 for (int i=0; i < height; i+=gridsize){
 line(0, i, width, i);
 textAlign(LEFT);
 if (g_values &&
 i%(2*gridsize)==0)
 text(empty+(height-i), 0+(fontsize/4), i-(fontsize/4));
 }}
 }
 }
}// end class Display

180 Make: Basic Arduino Projects

Figure 19-7. The Rocket Game Fritzing circuit schematic diagram

182 Make: Basic Arduino Projects

Figure 20-1. The Temperature Indicator

Let’s Build a Temperature Indicator
As shown in Figure 20-1, the breadboard analog circuit is quite simple to build, and
requires only a thermistor and a 10KΩ fixed resistor wired in series. Where the two
components are tied together, a jumper wire connects between them and pin A3
of the Arduino microcontroller.

The Temperature Indicator can be built using the Fritzing wiring diagram shown in
Figure 20-2. Since there are only two electronic components, you have plenty of
room for electrical wiring and breadboard placement of the components. Although
the Fritzing wiring diagram shows a small breadboard, you can alternatively use the
MakerShield protoboard to build the Temperature Indicator.

184 Make: Basic Arduino Projects

numbers based on the thermistor’s change in resistance. It uses the same serial
communication technique used in Chapters 17, 18, and 19 to talk with the Process-
ing programming language. Here are the steps you’ll need to follow:

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 20-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

With the Temperature Indicator sketch uploaded to the Arduino microcontroller,
the Serial Monitor will display decimal numbers as shown in Figure 20-3. If you touch
the thermistor—making it hotter with your own body heat—the Serial Monitor
numbers will change. Also, if you add an external LED between pins D13 and GND,
you’ll have a visual indicator of when the thermistor’s temperature has exceeded
the threshold value programmed in the sketch. Figure 20-4 shows the Temperature
Indicator’s LED in operation.The Temperature Indicator is not an actual electronic
thermometer but a device that can sense a certain heat level and respond to it by
turning on an LED. The temperature units of Fahrenheit or Celsius are not displayed,
thereby removing the concern about the thermistor’s temperature resolution so the
focus is on the device’s actual operating performance.

Figure 20-3. Decimal numbers being displayed on the Arduino Serial Monitor

186 Make: Basic Arduino Projects

 int analogInput = 3;
 int LEDpin = 13;

// variable to store the value
 int value = 0;

// a threshold to decide when the LED turns on
 int threshold = 800;

void setup(){

// declaration of pin modes
 pinMode(analogInput, INPUT);
 pinMode(LEDpin, OUTPUT);

// begin sending over serial port
 Serial.begin(9600);
}

void loop(){
// read the value on analog input
 value = analogRead(analogInput);

// if value greater than threshold turn on LED
if (value < threshold) digitalWrite(LEDpin, HIGH);
else digitalWrite(LEDpin, LOW);

// print out value over the serial port
 Serial.println(value);

// and a signal that serves as separator between two values
 Serial.write(10);

// wait for a bit to not overload the port
 delay(100);
}

The Negative Temperature Coefficient
(NTC) Sensor with Processing
When we connect the Temperature Indicator sketch to Processing, the thermistor
temperature data from the sketch will be displayed in the Processing IDE Console
Monitor, as well as on the main screen of the computer. The layout of this Processing
canvas is simple. The graphics consist of two rectangular boxes with fluttering hor-
izontal lines. The fluttering lines represent the thermistor’s temperature, received
from the Arduino microcontroller. An example of the fluttering lines and Console
Monitor thermistor data is shown in Figure 20-5 and Figure 20-6. The NTC Sensor
sketch is shown in Example 20-2. After uploading the NTC Sensor sketch to the
Arduino microcontroller, two rectangular boxes with fluttering horizontal lines rep-
resenting thermistor data will be visible on the computer screen.

188 Make: Basic Arduino Projects

Figure 20-5. Fluttering horizontal data lines

Figure 20-6. Thermistor data displayed on the Processing Console Monitor

Chapter 20: Temperature Indicator (with Processing) 189

The block diagram in Figure 20-7 shows the electronic component blocks and the
data flow for the Temperature Indicator. A Fritzing electronic circuit schematic dia-
gram of the Temperature Indicator is shown in Figure 20-8. Electrical/electronic
engineers use circuit schematic diagrams to design, build, and test cool interactive
electronic products for society.

Figure 20-7. The Temperature Indicator block diagram

Something to Think About
How can a second LED be wired to the Arduino microcontroller to display when the
temperature falls below a certain threshold?

Chapter 20: Temperature Indicator (with Processing) 191

Figure 20-8. The Temperature Indicator Fritzing circuit schematic diagram

192 Make: Basic Arduino Projects

Figure 21-1. The Sweeping Servo Motor Tester

Let’s Build a Servo Motor Tester
The Servo Motor Tester is quite simple to build and only requires the three compo-
nents shown in the Parts List. With this tester, you will be able to quickly check any
of the small voltage-based servo motors you may have in your junk box. The Servo
Motor Tester can be built using the Fritzing wiring diagram shown in Figure 21-2.
Since the major component for this project is the servo motor, placement of the
parts on the breadboard is not critical. You have lots of room to explore different
ways to place the servo motor when laying out the circuit on the breadboard.

In addition, by inserting the appropriate size solid wires into the three-pin female
connector, you can easily make a male connecting component. This homebrew male
connector makes it easy to insert the servo motor into a breadboard. (For further
reference on building a servo motor male connector, see Figure 3-4 in Chapter 3.)
Although the Fritzing wiring diagram shows a small breadboard, you can also use
the MakerShield protoboard to build the Servo Motor Tester.

194 Make: Basic Arduino Projects

Figure 21-5. The Servo Motor Tester Fritzing circuit schematic diagram

Something to Think About
How can an LED be wired to the Arduino microcontroller to light up when the servo
motor is at 180°?

198 Make: Basic Arduino Projects

Figure 22-1. The assembled Electronic Cricket

Let’s Build an Electronic Cricket
The Electronic Cricket is a creative, interactive device that produces electronic
sounds using an Arduino microcontroller, a temperature sensor, two fixed resistors,
a potentiometer, and a mini speaker. The values for these electronic components
are in the Parts List. Follow the Fritzing wiring diagram shown in Figure 22-2 to
construct the cricket.

When the project is built, you can immediately test the cricket by holding the tem-
perature sensor between your fingers. The pitch of the sound coming out of the
speaker, as well as the frequency of the chirping, will increase as the temperature
rises. You can control the volume of the chirping with the potentiometer.

200 Make: Basic Arduino Projects

Figure 22-4. The Electronic Cricket Fritzing circuit schematic diagram

Something to Think About
How can the mini speaker be replaced with an LED for a visual pitch indicator?

204 Make: Basic Arduino Projects

Figure 23-1. The assembled Pocket Stage Light

Let’s Build a Pocket Stage Light
Operating an electronic gadget with sensors is called physical computing. Other
examples of physical computing devices are Microsoft’s Kinect and smartphone
touch screens. The Pocket Stage Light is operated by warm temperature. The tem-
perature value is changed to an electrical voltage and used by the Arduino micro-
controller to turn on an RGB LED. Control over the color lighting sequence of red,
green, and blue is provided by an Arduino sketch.

Use the Fritzing wiring diagram shown in Figure 23-2 to build the Pocket Stage Light.
Touching the thermistor with your finger will signal the Arduino microcontroller to
turn on the red, green, and blue colors of the LED in sequence. After you release the
thermistor, the color LEDs will continue to sequence for approximately 10 seconds.

206 Make: Basic Arduino Projects

Upload the Pocket Stage Light Sketch
With the Pocket Stage Light wired on the breadboard, now it’s time to upload the
Arduino sketch. Example 23-1 turns on three Arduino microcontroller digital pins
(D9, D10, and D11) in sequence that operate the red, green, and blue portion of the
RGB LED. Here are the steps you’ll need to follow:

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 23-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

The Arduino microcontroller is now programmed with the Pocket Stage Light
sketch. When the sketch starts running, the RGB LED is off. Touch the thermistor
with your finger, and the RGB LED will begin to sequence its red, green, and blue
colors. Releasing the sensor will allow the color sequencing to continue for approx-
imately one second. Figure 23-3 and Figure 23-4 show the operation of the Pocket
Stage Light.

Figure 23-3. Pocket Stage Light projecting a green light on a whiteboard

208 Make: Basic Arduino Projects

Figure 23-4. Pocket Stage Light projecting a blue light on a whiteboard

Example 23-1. Pocket Stage Light sketch

/*
 Pocket Stage Light
 The RGB LED will sequence in colors (blue, green, red) by use
 of a thermistor.

 15 August 2013
 by Don Wilcher

 */

int tsensorPin = A0; // select the input pin for the temperature sensor
int RPin = 11; // select the pin for the red LED
int GPin = 10; // select the pin for the green LED
int BPin = 9; // select the pin for the blue LED
int tsensorValue = 0; // to store the value from the temperature sensor

void setup() {
 // declare the LED pins as outputs:
 pinMode(RPin, OUTPUT);
 pinMode(GPin, OUTPUT);
 pinMode(BPin, OUTPUT);
 Serial.begin(9600);

Chapter 23: A Pocket Stage Light 209

Figure 23-5. The Pocket Stage Light block diagram

Figure 23-6. The Pocket Stage Light Fritzing circuit schematic diagram

Something to Think About
Does a 10KΩ thermistor have a faster RGB LED turn-on response compared to the
Ultimate Microcontroller Pack’s sensing component?

Chapter 23: A Pocket Stage Light 211

Figure 24-1. The assembled Electronic Pixel

Let’s Build an Electronic Pixel
In the case of the Electronic Pixel, the LED on and off commands are sent from the
Arduino’s Serial Monitor and converted into equivalent voltage pulses. These volt-
age pulses are sent through a USB cable attached between the computer and the
Electronic Pixel. Digital pin D9 of the Arduino microcontroller is used to turn on and
off the RGB LED.

The Electronic Pixel is built using a breadboard with the components wired to each
other, as shown in Figure 24-2. Although the Fritzing wiring diagram shows the
Electronic Pixel built on a breadboard, the MakerShield protoboard can be used as
well. Also, the Fritzing wiring diagram shows a single pole, double throw (SPDT)
switch instead of the double pole, double throw (DPDT) electrical component
shown in the Parts List. The remainder of the DPDT switch can be wired as shown
in Figure 24-2. Refer to Chapter 5 for additional instructions on how to set up the
DPDT switch for breadboarding.

214 Make: Basic Arduino Projects

Figure 24-2. The Electronic Pixel Fritzing wiring diagram

Chapter 24: Electronic Pixel 215

int ledPin = 9; // the pin that the RGB LED is attached to
int incomingByte; // a variable to read incoming serial data

void setup() {
 // initialize serial communication:
 Serial.begin(9600);
 // initialize the RGB LED pin as an output:
 pinMode(ledPin, OUTPUT);
}

void loop() {
 // see if there's incoming serial data:
 if (Serial.available() > 0) {
 // read the oldest byte in the serial buffer:
 incomingByte = Serial.read();
 // if it's a capital H, turn on the LED:
 if (incomingByte == 'H') {
 digitalWrite(ledPin, LOW);
 }
 // if it's an L, turn off the LED:
 if (incomingByte == 'L') {
 digitalWrite(ledPin, HIGH);
 }
 }
}

Figure 24-3. A very large red pixel projected onto a whiteboard

Chapter 24: Electronic Pixel 217

Figure 24-6. The Electronic Pixel Fritzing circuit schematic diagram

Something to Think About
How can the switching sequence between the red, green, and blue LEDs be changed
to operate faster?

Chapter 24: Electronic Pixel 219

Figure 25-1. The Metronome

Let’s Build a Metronome
The Metronome is quite easy to build and it looks and sounds awesome when op-
erating. The DC servo motor provides the swinging motion to a homebrew pendu-
lum rod made from a piece of solid wire. The solid wire is threaded through the
bottom hole of a servo arm. To secure the wire to the motor while in motion, the
end of the wire passing through the bottom hole is wrapped around the servo arm.
To complete the mechanical assembly of the servo motor, the homebrew pendulum
rod (the solid wire) is stretched out, as shown in Figure 25-1. Next, the servo motor
is attached to the breadboard using a piece of solid wire to prevent it from moving
when the pendulum rod is swinging back and forth. The wire is wrapped around
the servo motor. The free wire ends on each side of the servo motor are inserted
into the breadboard (see Figure 25-2).

222 Make: Basic Arduino Projects

Figure 25-2. Servo motor attachment to breadboard: the free wire ends are inserted into the
breadboard

The 10KΩ potentiometer is used as a volume control to adjust the sound level of
the piezo buzzer. A cool trick used to make the “tick” sound, along with adjusting
the volume, is to place a small piece of tape over the piezo buzzer. Figure 25-3 shows
the location of the volume control, and the piezo buzzer with tape placed over it.
The Fritzing wiring diagram for building the Metronome is shown in Figure 25-4. As
with previous projects presented in this book, the MakerShield protoboard is a great
prototyping tool to use in building this cool mini Metronome device. Its bread-
boarding area allows the piezo buzzer, potentiometer, and servo motor components
to be wired to the Arduino microcontroller in a compact package.

Chapter 25: The Metronome 223

Figure 25-4. The Metronome Fritzing wiring diagram

Upload the Metronome Sketch
Before uploading Example 25-1 to the Arduino, check and correct any wiring errors
on your breadboard using the Fritzing diagram shown in Figure 25-4. With the Met-
ronome electrical circuit wired on the breadboard, now it’s time to upload the Ar-
duino sketch. Here are the steps you’ll need to follow:

Chapter 25: The Metronome 225

Example 25-1. The Metronome sketch

/*
 Metronome sketch

 The servo motor arm will swing back and forth with a tick sound coming
 from a piezo buzzer.

 31 August 2013
 by Don Wilcher

*/

#include <Servo.h>

Servo myservo; // create servo object to control a servo
 // a maximum of eight servo objects can be created

int pos = 0; // variable to store the servo position
int PBuzzer = 7; // piezo buzzer pin number

void setup()
{
 myservo.attach(9); // attaches the servo on pin 9 to the servo object
 pinMode(PBuzzer, OUTPUT);
}

void loop()
{
 for(pos = 0; pos <=45; pos += 1) // goes from 0 degrees to 45 degrees
 { // in steps of 1 degree
 if(pos==45){
 digitalWrite(PBuzzer, LOW);
 delay(15);
 digitalWrite(PBuzzer, HIGH);
 delay(15);
 digitalWrite(PBuzzer, LOW);
 delay(15);
 }
 myservo.write(pos); // go to position in variable 'pos'
 delay(15); // waits 15ms to reach the position
 }

 for(pos = 45; pos>=1; pos-=1) // goes from 45 degrees to 0 degrees
 {
 if (pos==1){
 digitalWrite(PBuzzer, LOW);
 delay(15);
 digitalWrite(PBuzzer, HIGH);
 delay(15);
 digitalWrite(PBuzzer, LOW);

Chapter 25: The Metronome 227

Figure 25-7. The Metronome Fritzing circuit schematic diagram

Chapter 25: The Metronome 229

Figure 26-1. The Secret Word Game

Let’s Build a Secret Word Game
The Secret Word Game is a little tricky to build because of the wiring. Therefore,
you’ll have to use the full breadboard that comes with the Ultimate Microcontroller
Pack to adequately space the parts, as shown in Figure 26-1. Use the Fritzing wiring
diagram shown in Figure 26-2 to build the Secret Word Game on the full-size
breadboard.

Pin 1 of the LCD is the leftmost input at the base of the screen. Pins 2 to 16 continue
to the right. (Another way to identify pin 1 is by the small circle placed on the PCB
right next to pin 1.)

The photocell and RGB LED should be placed on the breadboard so that they are
easily visible and accessible; you need to clearly see the LED, and easily shine a light
on the photocell.

232 Make: Basic Arduino Projects

Upload the Secret Word Game Sketch
With the Secret Word Game wiring on the breadboard completed, now it’s time to
upload the Arduino sketch. Here are the steps you’ll need to follow:

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 26-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

The Arduino microcontroller is now programmed with the Secret Word Game
sketch. The LCD will be blank and the RGB LED turned off. When you press the “Start
Game” pushbutton, the RGB LED will light up. The red, green, and blue LEDs will
sequence five times before turning off. Figure 26-3 shows the RGB LED sequencing
after the Start Game pushbutton has been pressed.

Figure 26-3. The Secret Word Game starting its timing sequence using the RGB LED

Once the RGB LED has turned off, shining a light on the photocell will reveal the
secret word on the LCD (Figure 26-4). Removing the light from the photocell will
erase the secret word on the LCD. New secret words can easily be uploaded to the
Arduino by changing one line of instruction in the sketch.

234 Make: Basic Arduino Projects

Figure 26-4. The secret word “Cat” being revealed on the LCD

Example 26-1. The Secret Word Game sketch

/*

 Demonstrates the use of a 16x2 LCD. A brief press of the Start Game
 pushbutton will turn on the RGB LED timing sequencing. The RGB LED turns
 off and the secret word can be revealed by a shining light on a photocell.

 25 August 2013
 by Don Wilcher

 */

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
int buttonPin = 6; // the number of the Start Game pushbutton pin
int RPin = 7; // select the pin for the red LED
int GPin = 8; // select the pin for the green LED
int BPin = 9; // select the pin for the blue LED

// variables will change:
int buttonStatus = 0; // variable for reading the Start Game
 // pushbutton status

void setup() {
 // initialize the pushbutton pin as an input:
 pinMode(buttonPin, INPUT);

 // declare the LED pins as outputs:
 pinMode(RPin, OUTPUT);
 pinMode(GPin, OUTPUT);
 pinMode(BPin, OUTPUT);

Chapter 26: The Secret Word Game 235

 // set up the LCD's number of columns and rows:
 lcd.begin(16, 2);

}

void loop() {
 // read the state of the pushbutton value:
 buttonStatus = digitalRead(buttonPin);
 // check if the pushbutton is pressed
 // if it is, the buttonState is HIGH:
 if (buttonStatus == HIGH) {
 lcd.clear();
 delay(500);
 for (int i=0; i <= 5; i++){
 lcd.setCursor(8,0);
 lcd.print(i);

 // turn the red LED on:
 digitalWrite(BPin, HIGH);
 digitalWrite(RPin, LOW);

 // delay red LED for 1/2 second:
 delay(500);
 // turn the green LED on:
 digitalWrite(RPin, HIGH);
 digitalWrite(GPin, LOW);
 // delay green LED for 1/2 second:
 delay(500);
 // turn the blue LED on:
 digitalWrite(GPin, HIGH);
 digitalWrite(BPin, LOW);
 //delay blue LED for 1/2 second:
 delay(500);
 }
 } else {
 //turn red, green, and blue LEDs off:
 digitalWrite(RPin, HIGH);
 digitalWrite(GPin, HIGH);
 digitalWrite(BPin, HIGH);

 // print a Secret Word to the LCD:
 lcd.setCursor(0,0);
 lcd.print("Secret Word is:");
 // set the cursor to column 0, line 1
 // (note: line 1 is the second row, since counting begins with 0):
 lcd.setCursor(0, 1);
 // print the number of seconds since reset:
 lcd.print("Cat"); // change secret word or phrase here!
 }
}

236 Make: Basic Arduino Projects

Figure 26-6. The Secret Word Game Fritzing circuit schematic diagram

238 Make: Basic Arduino Projects

Index

Symbols
!= (logical NOT function), 47
&& (logical AND function), 58
100 uF electrolytic capacitor, 105
|| (logical OR function), 66
Ω (omega symbol), for ohms, 32

A
Adjustable Twin LED Flasher, 35

sketch, 39
Amazing Pushbutton (with Processing),

143–156
Amazing Pushbutton in action, 153
building, 144
DisplayItems Processing sketch, 152–

153
downloading and installing Processing,

148
parts list, 143
pa_Pushbutton Processing sketch,

149–152
uploading the sketch, 146
visualizing digital data with Processing,

148
amplifiers

simple transistor amplifier, 103–110
building a Theremin, 104
circuit theory, 109
parts list, 103
uploading Theremin sketch, 106
using Serial Monitor for Theremin

sketch data, 108
AND logic gate, 51

(see also Arduino AND logic gate)
circuit symbol for, 54
reasons to use Arduino microcontroller

to build, 55
truth table, 54

animatronic controllers, 24
Arduino AND logic gate, 51–59

block diagram and circuit schematic di-
agram, 59

building, 55

circuit theory, 52
parts list, 51
uploading sketch for, 57

Arduino IDE
Serial Monitor, 14

Arduino NOT logic gate, 43–50
block diagram and circuit schematic di-

agram, 49
building, 45
circuit symbol for NOT logic gate, 45
circuit theory, 44
Fritzing wiring diagram, 45
parts list, 43
pressing pushbutton switch, 47
testing using truth table, 49
truth table, 45
uploading logic gate sketch, 46

Arduino Ohmmeter, 111–117
building, 112
circuit theory, 115
electrical safety tip, 117
parts list, 111
uploading the sketch, 113

Arduino OR logic gate, 61–69
block diagram and circuit schematic di-

agram, 68
building, 64
circuit theory, 62
parts list, 61
uploading scheme for, 66

B
binary number system, 172
block diagrams, 135

C
capacitors, polarized, 106
cathodes, 85
Circuit Lab, 2
circuit schematic diagrams (see electronic

circuit schematic diagrams)
circuit symbol

for AND logic gate, 54

239

for NOT logic gate, 45
classes, 166
color-coded wires, 195
common anode, 85
common anode pin, 83
common anode RGB LED, 81
Console Monitor, 176
counters, for loop, 92
crickets, 199

(see also Electronic Cricket)
response to temperature, 199

current, defined, 73

D
DC motors, 197
DMM (digital multimeter), 14

reading resistance of tilt control switch,
26

DPDT (double pole, double throw) switch,
214

E
electrical circuits, creating and testing with

online simulator, 2
Electrical Motor Tester (see Sweeping Ser-

vo)
electrical safety tips

for Arduino Ohmmeter, 117
for Metal Checker, 101

electrical signal flow of electronic products,
135

electronic circuit schematic diagrams, 15
Adjustable Twin LED Flasher, 35
AND logic gate controlling LED, 53
Arduino AND logic gate, 59
Arduino NOT logic gate, 49
Arduino Ohmmeter, 115
Arduino OR logic gate, 68
DPDT switch toggling two LEDs, 72
Electronic Cricket, 203
Electronic Pixel, 218
Interactive Twin LED Flasher, 38
LCD News Reader, 128
Logic Tester, 135
Logic Tester (with an LCD), 141
Magic Light Bulb, 91
Metal Checker, 100
Metronome, 228
OR logic gate controlling an LED, 62
Pocket Stage Light, 210
RGB Flasher, 81
Rocket Game, 181
Secret Word Game, 237
Servo Motor Tester, 197
Terrific Tilt Switch, 167

Theremin, 109
Tilt Sensing Servo Motor Controller, 26
Trick Switch, 6
Up-Down Sensor, 73

Electronic Cricket, 199–204
block diagram and circuit schematic di-

agram of Electronic Cricket, 203
building, 200
parts list, 199
uploading the sketch, 201

electronic metronomes, 221
Electronic Pixel, 213–219

block diagram and circuit schematic di-
agram, 218

building, 214
parts list, 213
uploading the sketch, 216–218

F
FALSE and TRUE states, 52
for loop, operating Magic Light Bulb, 92
FrankenBot toy, 38–41

Interactive Twin LED Flasher, 38
Fritzing circuit schematic diagrams (see

electronic circuit schematic diagrams)
Fritzing diagrams

Adjustable Twin LED Flasher, 35
Amazing Pushbutton, 144
AND logic gate, 53
Arduino AND logic gate, 55
Arduino Ohmmeter, 112
Arduino OR logic gate, 64
electronic circuit schematic diagram of

Tilt Sensing Servo Motor Controller,
26

electronic circuit schematic of Sunrise-
Sunset Light Switch, 15

Electronic Cricket, 200
Electronic Pixel, 214
Interactive Twin LED Flasher, 38
LCD News Reader, 122
Logic Tester with an LCD, 138
Logic Tester with an RGB LED, 132
Magic Light Bulb, 88
Metal Checker, 96
Metronome, 223
OR logic gate, 62
Pocket Stage Light, 206
RGB Flasher, 81
Rocket Launcher, 170
Secret Word Game, 232
Servo Motor Tester, 194
simple NOT Logic Gate wiring diagram,

44
Sunrise-Sunset Light Switch, 10

240 Index

Temperature Indicator, 184
Terrific Tilt Switch, 158
Theremin, 104
Tilt Sensing Servo Motor Controller, 21
Trick Switch, 3
Twin LED Flasher, 31
Up-Down Sensor, 73

G
gesture controls, 71

H
headers

adding 16-pin male header to LCD, 138
defined, 121
male header soldered to LCD PCB, 120

I
infinite resistance reading on DMM, 26
Interactive Twin LED Flasher, 38
inverters, 45

L
LCD News Reader, 119–129

building the LCD, 120
circuit theory, 128
parts list, 119
sketch for, 122–128
uploading the sketch, 122

LCDs, 119
in Secret Word Game, 232
logic tester with LCD, 137–142

LDRs (light-dependent resistors), 14
(see also photocells)

LEDs
in Arduino OR logic gate, 64
in parallel, 29–41

Adjustable Twin LED Flasher, 35
circuit theory, 31
Interactive Twin LED Flasher, 38
twin LED flasher, 31

multicolor (see Multicolor RGB Flasher)
replacing incandescent light bulb, 66
RGB, 79

(see also RGB LEDs)
staying on after switched off, 1
taking pin LOW to light it, 85

light-dependent resistors (LDRs), 14
(see also photocells)

liquid crystal displays (see LCDs; LCD News
Reader)

logic gates, 43
(see also Arduino AND logic gate; Ardu-

ino NOT logic gate; Arduino OR log-
ic gate)

logic operators, 55
logic probe, 141
Logic Tester (with an LCD), 137–142

building, 138
circuit theory, 141
parts list, 137
uploading the sketch, 139

Logic Tester (with an RGB LED), 131–136
building, 132
circuit theory, 135
parts list, 131
uploading the sketch, 133

M
Magic Light Bulb, 87–92

block diagram and circuit schematic di-
agram, 91

building, 88
parts list, 87
running through tricolor pattern, 89
uploading the sketch, 89

MakerShield, 29
Adjustable Twin LED Flasher, 35
Arduino AND logic gate, 55
directions for building, 33
Interactive Twin LED Flasher, 38
Magic Light Bulb built on, 88
Metal Checker built on, 96
NOT logic gate device, 46
RGB Flasher built on, 83
Theremin built on, 104
Twin LED Flasher, building on, 31
up-down sensor built on, 75

Makezine/Arduino projects website, 46
Metal Checker, 95–101

building, 96
circuit theory, 100
electrical safety tip, 101
parts list, 95
reasons to use transistor and Arduino,

97
uploading sketch for, 98

Metronome, 221–228
block diagram and circuit schematic di-

agram, 228
building, 222
parts list, 221
uploading the sketch, 225–228

microcontrollers, Arduino, using to build
logic gates, 55

Microsoft, Kinect, 206
Multicolor RGB Flasher, 79–86

circuit theory, 80
parts list and block diagram, 79
RGB Flasher sketch, 83

Index 241

RGB Flasher, building, 81

N
Negative Temperature Coefficient (NTC)

Sensor, 188–191
NOT logic gate, 43

(see also Arduino NOT logic gate)
circuit symbol for, 45
truth table, 45, 49

NPN transistors, 100

O
ohmmeters, 111

(see also Arduino Ohmmeter)
ohms and omega symbol (Ω), 32
ON-OFF indicators for Trick Switch, 4
Opposite Switch (see Arduino NOT logic

gate)
OR logic gate, 61

(see also Arduino OR logic gate)
circuit schematic diagram, 62
Fritzing wiring diagram, 62
truth tables, 63

orientation detection sensor circuit, 27
oscillators, 104

P
parallel circuits, 62
parts lists

Amazing Pushbutton (with Processing),
143

Arduino AND logic gate, 51
Arduino NOT logic gate, 43
Arduino Ohmmeter, 111
Electronic Cricket, 199
Electronic Pixel, 213
LCD News Reader, 119
Logic Tester with an LCD, 137
Logic Tester with an RGB LED, 131
Magic Light Bulb, 87
Metal Checker, 95
Metronome, 221
Multicolor RGB Flasher, 79
OR logic gate, 61
Pocket Stage Light, 205
Rocket Launcher, 169
Secret Word Game, 231
simple transistor amplifier, 103
Sunrise-Sunset Light Switch, 9
Sweeping Servo Motor Tester, 193
Temperature Indicator, 183
Terrific Tilt Switch (with Processing),

157
Tilt Flasher, 71
Tilt Sensing Servo Motor Controller, 19

Trick Switch, 1
PCBs (printed circuit boards), 122
photocells, 10

defined, 12
in Arduino AND logic gate, 55
in Interactive Twin LED Flasher, 38
in OR logic gate, 64
picture of, 13
sensor data scrolling on Serial Monitor,

108
physical computing, 24, 206
piezo buzzer

in Metal Checker, 97
troubleshooting, 100

in Metronome, 223
pitch range, Electronic Cricket, 203
pixels, 213

(see also Electronic Pixel)
PNP transistors, 100
Pocket Stage Light, 205–211

block diagram and circuit schematic di-
agram, 210

building, 206
parts list, 205
uploading the sketch, 208–210

polarized capacitors, 106
potentiometers, 13

adjusting sound level of buzzer in Met-
ronome, 223

in LCD News Reader, 120, 128
in logic tester with an LCD, 138
operating mini speaker, 203

printed circuit boards (PCBs), 122
Processing, 143

additional information on, 154
DisplayItems sketch, 152–153, 165, 179
download site for version 2.0, 171
downloading and installing, 148
NTC Sensor sketch, 188
pa_Pushbutton Processing sketch,

149–152
pa_Tilt sketch, 162–165
Rocket Game sketch, 174–179
visualizing digital data with, 148, 162

puppets, electromechanical, 24
Pushbutton Multicolor Flasher (see Magic

Light Bulb)
pushbutton switches in parallel (see Ardui-

no OR logic gate)
pushbutton switches in series (see Arduino

AND logic gate)

242 Index

R
resistance

measuring for electronic components,
111

mesuring with Arduino Ohmmeter, 113
reading for tilt control switch, 26
relationship with voltage, 115

resistor-capacitor timing basics
Sunrise-Sunset Light Switch, 9–16
Trick Switch, 1–6

resistors, 111
connected in series, resistance reading

from, 115
in logic tester with an LCD, 139

retro portable electronic games, 231
(see also Secret Word Game)

RGB Flasher, 79
(see also Multicolor RGB Flasher)
block diagram, 79
building, 81
sketch for, 83

RGB LEDs, 79
common anode, 81
creating white light with, 207
in Electronic Pixel, 214
in Pocket Stage Light, 206
logic tester with, 131–136

pinout of RGB LED, 132
operation with mini pushbutton switch

in Magic Light Bulb, 89
SPST switches controlling, 80
taking pin LOW to light it, 85
typical, with pinout names, 80

Rocket Launching Game (with Processing),
169–181
block diagram and circuit schematic di-

agram, 181
building a Rocket Game, 170
DisplayItems Processing Sketch, 179
MultiDigital4 sketch, 172–174
Rocket Game Processing sketch, 174–

179
Rocket Launcher parts list, 169
uploading MultiDigital4 sketch, 171

S
Secret Word Game, 231–237

block diagram and circuit schematic di-
agram, 237

building, 232
parts list, 231
rules for, 237
uploading the sketch, 234–237

sensors, 19

serial communications (see Electronic Pix-
el)

Serial Monitor, 210
using to debug code, 108

serial monitors
output for tilt control switch informa-

tion, 24
Sunrise-Sunset detector with, 14

displaying Sunset and Sunrise mes-
sages, 15

series circuit, 53
servo motors, 197

build process for Tilt Sensing Servo Mo-
tor Controller, 20

in Metronome, 222
testing limits of, 193
tilt sensing servo motor controller, 19

sketches (code)
Adjustable Twin LED Flasher, 35, 39
Amazing Pushbutton sketch, 146
Arduino AND Logic Gate, 57
Arduino NOT Logic Gate, 46
Arduino Ohmmeter sketch, 113
Arduino OR logic gate, 66
Blink sketch for Twin LED Flasher, 31
DisplayItems Processing sketch, 152–

153, 165, 179
Electronic Cricket sketch, 202
Electronic Pixel, 216
LCD News Reader, 122–128
Logic Tester (with an LCD), 140
Logic Tester sketch, 133
Magic Light Bulb running through tri-

color pattern, 89
Metal Checker sketch, 98
Metronome sketch, 226
MultiDigital4 sketch, 172–174
NTC Sensor Processing sketch, 188
pa_Pushbutton Processing sketch,

149–152
pa_Tilt Processing sketch, 162–165
Pocket Stage Light sketch, 208
Processing sketch listings for Arduino

projects, 162
Pushbutton, 3
Pushbutton with LED indicators

changes, 5
RGB Flasher, 83
Rocket Game Processing sketch, 176–

179
Secret Word Game, 234–237
Sunrise Sunset Detector with Serial

Monitor, 14
Sunrise-Sunset Light Switch, 11
Sweeping sketch, 196
Temperature Indicator sketch, 186

Index 243

Terrific Tilt Switch, 160
Theremin sketch, 106
Tilt Control Switch, 23
Tilt Control Switch with Serial Monitor,

24
Up-Down Sensor built on MakerShield,

75
smartphone touch screens, 206
SPDT (single pole, double throw) switch,

214
speakers

mini 8Ω speaker for Theremin, 104, 106
potentiometer operating mini speaker,

203
SPST (single pole, single throw) switches,

80
stage lighting, 205

(see also Pocket Stage Light)
Sunrise-Sunset Light Switch, 9–16

block diagram of electronic compo-
nents and electrical signal flow, 15

circuit schematic diagram, 15
detector with serial monitor, 14
Fritzing Wiring Diagram, 10
parts list, 9
RC timing circuit with photocell, 12
serial monitor displaying messages, 15

Sweeping Servo, 193–198
block diagram and circuit schematic di-

agram, 197
building a servo motor tester, 194
parts list, 193
uploading Sweeping sketch, 195

T
temperatore sensing (see Electronic Crick-

et; Pocket Stage Light)
Temperature Indicator (with Processing),

183–191
block diagram and electronic circuit

schematic diagram, 191
building a Temperature Indicator, 184
Negative Temperature Coefficient

(NTC) Sensor with Processing, 188–
191

parts list, 183
Temperature Indicator sketch, 186
uploading Temperature Indicator

sketch, 185
Terrific Tilt Switch (with Processing), 157–

167
block diagram and circuit schematic di-

agram, 167
building, 158
DisplayItems Processing sketch, 165

parts list, 157
pa_Tilt Processing sketch, 162–165
uploading Terrific Tilt Switch sketch,

159
visualizing digital data with Processing,

162
Theremin

block diagram and circuit schematic di-
agram, 109

building, 104
for simple transistor amplifier, 103
uploading sketch to the Arduino, 106
using Serial Monitor to display data

from sketch, 108
thermistors

defined, 183
experimenting with 10KΩ thermistor

and RGB LEDs, 210
in electronic cricket, 199
in Pocket Stage Light, 206
in Temperature Indicator, 186

tick, synchronizing with swinging motion
in Metronome, 228

Tiger Electronics, 231
tilt control switch, 72
tilt control switch, typical, 27
Tilt Flasher, 71–76

circuit theory, 72
parts list, 71
testing, 76
up-down sensor, 73
Up-Down Sensor block diagram, 71
uploading sketch for Up-Down Sensor

built on MakerShield, 75
Tilt Sensing Servo Motor Controller, 19–28

animatronic controller using, 24
block diagram, 26
building process, steps in, 20
circuit schematic diagram, 26
circuit theory, 27
observing tilt control switch behavior,

26
parts lists, 19
Tilt Control Switch sketch, 23
tilt control switch with Serial Monitor,

24
uploading tilt sensor sketch, 23

tilt sensor, 72
transistors

2N3904 NPN transistor pinout, 97
defined, 100
in pushbutton switch for logic tester

with LCD, 139
reasons for use in Metal Checker, 97
simple transistor amplifier, 103–110

244 Index

Trick Switch, 1–6
circuit schematic diagram, 6
parts list, 1
Pushbutton sketch, 3
steps in building process, 2
Trick Switch block diagram, 6
Trick Switch with ON-OFF indicators, 4

Pushbutton sketch with LED indica-
tors changes, 5

troubleshooting tips
AND logic gate, 59
Arduino OR logic gate, 69
Magic Light Bulb, 92
Metal Checker, 100
mini 8Ω speaker for Theremin, 107
Multicolor RGB Flasher, 85
NOT logic gate, 49
Sunrise-Sunset Light Switch, 14
Tilt Sensing Servo Motor Controller, 23
Trick Switch device, 3
Twin LED Flasher, 41
Up-Down Sensor, 76

TRUE and FALSE states, 52
TRUE output for OR logic gate, 62

truth tables
for AND logic gate, 54
for NOT logic gate, 45, 49
for OR logic gate, 63

TT (see truth tables)
Twin LED Flasher, 31

adjustable flash rate, 35
Blink sketch, 31
Fritzing diagram and circuit schematic

diagram, 31
interactive, 38

U
Ultimate Microcontroller Pack

MakerShield, 29
parts for Sunrise-Sunset Light Switch, 9
parts for Trick Switch, 1

up-down sensor, 71
(see also Tilt Flasher)
block diagram, 71
building, 73

V
variable resistors, 12
voltage divider, 115
voltage, relationship with resistance, 115

W
wires, color-coded, 195
wiring diagrams (see Fritzing diagrams)

Index 245

The cover and body font is Benton Sans, the heading font is Serifa, and the code font
is Bitstreams Vera Sans Mono.

About the Author
Don Wilcher is a passionate teacher of electronics technology and an electrical
engineer with 26 years of experience. He’s worked on industrial robotic systems,
automotive electronic modules and systems, and embedded wireless controls for
small consumer appliances. While at Chrysler Corporation, Don developed a week-
end enrichment pre-engineering program for inner-city kids. He is an Electronics
and Robotics Technologist developing twenty-first century educational products
for Makers and educators.

	Cover
	Copyright
	Table of Contents
	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. The Trick Switch
	Parts List
	Let’s Build a Trick Switch
	Trick Switch with On/Off Indicators
	Something to Think About

	Chapter 2. Sunrise-Sunset Light Switch
	Parts List
	Let’s Build a Sunrise-Sunset Light Switch
	Circuit Theory
	Sunrise-Sunset Detector with Serial Monitor
	Something to Think About

	Chapter 3. Tilt Sensing Servo Motor Controller
	Parts List
	Let’s Build a Tilt Sensing Servo Motor Controller
	Upload the Tilt Sensor Sketch
	A Simple Animatronic Controller Using the Serial Monitor
	Circuit Theory
	Something to Think About

	Chapter 4. Twin LEDs
	Parts List
	Circuit Theory
	Twin LED Flasher
	Build the Adjustable Twin LED Flasher
	It’s Alive! Build a FrankenBot Toy
	Something to Think About

	Chapter 5. The Opposite Switch
	Parts List
	Circuit Theory
	The Opposite Switch (aka the NOT Logic Gate)
	Build an Arduino NOT Logic Gate
	Upload the Arduino NOT Logic Gate Sketch
	Something to Think About

	Chapter 6. The AND Logic Gate
	Parts List
	Circuit Theory
	The Arduino AND Logic Gate
	Upload the Arduino AND Logic Gate Sketch
	Something to Think About

	Chapter 7. The OR Logic Gate
	Parts List
	Circuit Theory
	The Arduino OR Logic Gate
	Upload the Arduino OR Logic Gate Sketch
	Something to Think About

	Chapter 8. Tilt Flasher
	Parts List
	Circuit Theory
	The Up-Down Sensor
	Something to Think About

	Chapter 9. Multicolor RGB Flasher
	Parts List
	Circuit Theory
	The RGB Flasher
	Something to Think About

	Chapter 10. The Magic Light Bulb
	Parts List
	Let’s Build a Magic Light Bulb
	Upload the Magic Light Bulb Sketch
	Circuit Theory
	Something to Think About

	Chapter 11. Metal Checker: The Electronic Switch
	Parts List
	Let’s Build a Metal Checker
	Upload the Metal Checker Sketch
	Circuit Theory
	Something to Think About

	Chapter 12. The Theremin
	Parts List
	Let’s Build a Theremin
	Upload the Theremin Sketch
	Circuit Theory
	Something to Think About

	Chapter 13. An Arduino Ohmmeter
	Parts List
	Let’s Build an Arduino Ohmmeter
	Upload the Arduino Ohmmeter Sketch
	Circuit Theory
	Something to Think About

	Chapter 14. The LCD News Reader
	Parts List
	Let’s Build the LCD
	Upload the LCD News Reader Sketch
	Circuit Theory
	Something to Think About

	Chapter 15. A Logic Tester (with an RGB LED)
	Parts List
	Let’s Build a Logic Tester
	Upload the Logic Tester Sketch
	Circuit Theory
	Something to Think About

	Chapter 16. A Logic Tester (with an LCD)
	Parts List
	Let’s Build a Logic Tester
	Upload the Logic Tester Sketch
	Circuit Theory
	Something to Think About

	Chapter 17. The Amazing Pushbutton (with Processing)
	Parts List
	Let’s Build an Amazing Pushbutton
	Upload the Amazing Pushbutton Sketch
	Download and Install Processing Notes
	Let’s Visualize Digital Data with Processing
	Troubleshooting Tips for Processing
	Something to Think About

	Chapter 18. The Terrific Tilt Switch (with Processing)
	Parts List
	Let’s Build a Terrific Tilt Switch
	Upload the Terrific Tilt Switch Sketch
	Let’s Visualize Digital Data with Processing
	Something to Think About

	Chapter 19. The Rocket Launching Game (with Processing)
	Parts List
	Let’s Build a Rocket Game
	Upload the MultiDigital4 Sketch
	The Rocket Launcher with Processing
	Something to Think About

	Chapter 20. Temperature Indicator (with Processing)
	Parts List
	Let’s Build a Temperature Indicator
	Upload the Temperature Indicator Sketch
	The Negative Temperature Coefficient (NTC) Sensor with Processing
	Something to Think About

	Chapter 21. Sweeping Servo
	Parts List
	Let’s Build a Servo Motor Tester
	Upload the Sweeping Sketch
	Something to Think About

	Chapter 22. Electronic Cricket
	Parts List
	Let’s Build an Electronic Cricket
	Upload the Electronic Cricket Sketch
	Something to Think About

	Chapter 23. A Pocket Stage Light
	Parts List
	Let’s Build a Pocket Stage Light
	Upload the Pocket Stage Light Sketch
	Something to Think About

	Chapter 24. Electronic Pixel
	Parts List
	Let’s Build an Electronic Pixel
	Upload the Electronic Pixel Sketch
	Something to Think About

	Chapter 25. The Metronome
	Parts List
	Let’s Build a Metronome
	Upload the Metronome Sketch
	Something to Think About

	Chapter 26. The Secret Word Game
	Parts List
	Let’s Build a Secret Word Game
	Upload the Secret Word Game Sketch
	Rules for the Secret Word Game
	Something to Think About

	Index
	About the Author

