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So, you’ve bought the Ultimate Microcontroller Pack to build some cool and fun
Arduino projects. Now all you need are some sample projects to build with it! The
Basic Arduino Projects book is here to help you! It’s got a wealth of cool devices and
gadgets to build with your Ultimate Microcontroller Pack. The projects in the book
explain the world of electronics using a fun and hands-on approach.

The motivation behind writing this book is based on several conversations with
Brian Jepson (Make: Books Senior Editor) and the need for a book that allows people
to explore the electronic parts and the Arduino within the Ultimate Microcontroller
Pack. The Arduino is a very popular Maker platform that allows you to explore elec-
tronics with an interactive approach. As awesome as a box of parts is, it’s difficult for
people with little electronics experience to begin making things with it. This book
solves that problem by letting you learn more about electronics while you make fun
projects with the parts in this kit. Basic Arduino Projects is a practical guide that
illustrates how a bunch of electronic parts, coupled with Arduino, can be trans-
formed into awesome devices and gadgets for education and play.

In addition, being an electrical engineer and educator, I’m very sensitive to deliver-
ing good instructional content to my students (adults and teenagers). This book was
written to attract young readers to the exciting world of electronics by building cool
and creative projects using the Ultimate Microcontroller Pack. This book is also in-
tended for Makers and novices who have heard about the Arduino but never ex-
perienced the fun and excitement that comes from building cool electronic gadgets
and devices with this open hardware platform.

By building and experimenting with the projects in this book, young readers, Mak-
ers, and electronic novices will learn how to:

• Read electronic circuit schematic and block diagrams.

• Assemble electronic circuits using the MakerShield prototyping board.
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book and quoting example code does not require permission. Incorporating a sig-
nificant amount of example code from this book into your product’s documentation
does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the
title, author, publisher, and ISBN. For example: “Make: Basic Arduino Projects by Don
Wilcher (Maker Media). Copyright 2014 Don Wilcher, 978-1-449-36066-5.”

If you feel your use of code examples falls outside fair use or the permission given
here, feel free to contact us at bookpermissions@makermedia.com.

Safari® Books Online
Safari Books Online is an on-demand digital library that delivers
expert content in both book and video form from the world’s
leading authors in technology and business.

With a subscription, you can read any page and watch any video from our library
online. Read books on your cell phone and mobile devices. Access new titles before
they are available for print, get exclusive access to manuscripts in development, and
post feedback for the authors. Copy and paste code samples, organize your favorites,
download chapters, bookmark key sections, create notes, print out pages, and ben-
efit from tons of other time-saving features.

Maker Media has uploaded this book to the Safari Books Online service. To have full
digital access to this book and others on similar topics from MAKE and other pub-
lishers, sign up for free at http://my.safaribooksonline.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

MAKE
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

MAKE unites, inspires, informs, and entertains a growing community of resourceful
people who undertake amazing projects in their backyards, basements, and
garages. MAKE celebrates your right to tweak, hack, and bend any technology to
your will. The MAKE audience continues to be a growing culture and community
that believes in bettering ourselves, our environment, our educational system—our
entire world. This is much more than an audience, it’s a worldwide movement that
Make is leading—we call it the Maker Movement.
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For more information about MAKE, visit us online:

MAKE magazine: http://makezine.com/magazine/
Maker Faire: http://makerfaire.com
Makezine.com: http://makezine.com
Maker Shed: http://makershed.com/

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://oreil.ly/basic-arduino.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.
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Figure 1-3. Adding a green LED indicator to the Trick Switch circuit built on a full-size clear
breadboard

To complete the new product design, you need to make a few changes to the Push-
button sketch. Modify the sketch using the code changes shown in Example 1-2.

Example 1-2. Pushbutton sketch modified to include LED indicators

// constants won't change; they're used here to
// set pin numbers:
const int buttonPin = 2;      // the number of the pushbutton pin
const int ledPin = 12;        // the number of the LED pin
const int ledPin13 = 13;      // onboard LED

void setup() {
  // initialize the LED pins as outputs:
  pinMode(ledPin, OUTPUT);
  pinMode(ledPin13, OUTPUT);
  // initialize the pushbutton pin as an input:
  pinMode(buttonPin, INPUT);
}

void loop(){
  // read the state of the pushbutton value:
  int buttonStatus;
  buttonStatus = digitalRead(buttonPin);

  // check if the pushbutton is pressed
  // if it is, the buttonStatus is HIGH:
  if (buttonStatus == HIGH) {
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    // turn LED on:
    digitalWrite(ledPin, HIGH);
    // turn off onboard LED:
    digitalWrite(ledPin13,LOW);
  }
  else {
    // turn LED off:
    digitalWrite(ledPin, LOW);
    // turn on onboard LED:
    digitalWrite(ledPin13, HIGH);
  }
}

After you’ve saved the sketch changes and uploaded them to the Arduino, the green
LED will turn on. When you press the mini pushbutton, the green LED will turn off,
and the red LED will turn on. Pretty awesome stuff. Enjoy!

The block diagram in Figure 1-4 shows the electronic component blocks and the
electrical signal flow for the Trick Switch. A Fritzing electronic circuit schematic di-
agram of the switch is shown in Figure 1-5. Electronic circuit schematic diagrams
are used by electrical/electronic engineers to design and build cool electronic prod-
ucts for society.

Figure 1-4. Trick Switch block diagram

Something to Think About
Try different resistor and capacitor values and see what happens. Can you detect
any patterns? How can a small piezo buzzer be used with the Trick Switch?
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Figure 1-5. Trick Switch circuit schematic diagram
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Figure 2-1. Sunrise-Sunset Light Switch circuit built on a full-size clear breadboard (the 100 uF
electrolytic capacitor and the red and green LED negative pins are wired to ground)

Let’s Build a Sunrise-Sunset Light
Switch
You can build a Sunrise-Sunset Light Switch by modifying the Trick Switch device
from Chapter 1. The main change you will make is to remove the mini pushbutton
and replace it with a photocell. You will also add a green LED to pin D13 of the
Arduino. Refer to the Parts List for all the electronic parts required for this project.
Here are the steps required to build the electronic device:

1. From the Ultimate Microcontroller Pack, place the required parts on your work-
bench or lab tabletop.

2. Wire the electronic parts using the Fritzing diagram of Figure 2-2 or the actual
Sunrise-Sunset Light Switch device shown in Figure 2-1.

3. Type Example 2-1 into the Arduino IDE.

4. Upload the Sunrise-Sunset sketch to the Arduino. The green LED will be on.
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5. Wave your hand over the photocell for a moment. The red LED turns on. After
a few seconds, the red LED will turn off, and the green LED will turn on.

Figure 2-2. Sunrise-Sunset Light Switch Fritzing diagram

Example 2-1. Sunrise-Sunset Light Switch sketch

/*
  Sunrise-Sunset Light Switch

 Turns on and off a light-emitting diode (LED) connected to digital
 pins 12 and 13 after 10 to 20 seconds, by waving a hand over a photocell
 attached to pin 2.

 23 Nov 2012
 by Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
const int lightsensorPin = 2;  // the number of the light sensor pin
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const int redledPin = 12;      // the number of the red LED pin
const int greenledPin13 = 13;  // onboard LED and green LED pin

// variables will change:
int sensorState = 0;      // variable for reading light sensor status

void setup() {
  // initialize the LED pins as outputs:
  pinMode(redledPin, OUTPUT);
  pinMode(greenledPin13, OUTPUT);
  // initialize the light sensor pin as an input:
  pinMode(lightsensorPin, INPUT);
}

void loop(){
  // read the state of the pushbutton value:
  sensorState = digitalRead(lightsensorPin);

  // check if the light sensor is activated
  // if it is, the sensorState is HIGH:
  if (sensorState == HIGH) {
    // turn red LED on:
    digitalWrite(redledPin, HIGH);
    // turn off onboard LED and green LED:
    digitalWrite(greenledPin13, LOW);
  }
  else {
    // turn red LED off:
    digitalWrite(redledPin, LOW);
    // turn on onboard LED and green LED;
    digitalWrite(greenledPin13, HIGH);
  }
}

Circuit Theory
The Sunrise-Sunset Light circuit operates like the Smart Switch, except you don’t
have to use a mini pushbutton to start the timing function. The mini pushbutton
has instead been replaced with a light sensor called a photocell. A photocell is a
variable resistor that changes its resistance based on the amount of light touching
its surface. Light falling on a photocell will decrease its resistance value. No light will
increase its resistance value. Figure 2-3 shows the resistor-capacitor (RC) timing
circuit with a photocell variable resistor symbol.
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  pinMode(greenledPin13, OUTPUT);
  // initialize the light sensor pin as an input:
  pinMode(lightsensorPin, INPUT);
 // initialize serial communications at 9600 bps:
 Serial.begin(9600); // Add code instruction here!
}

void loop(){
  // read the state of the light sensor value:
  sensorState = digitalRead(lightsensorPin);

  // check if the light sensor is activated
  // if it is, the sensorState is HIGH:
  if (sensorState == HIGH) {
    // turn red LED on:
    digitalWrite(redledPin, HIGH);
    // turn off onboard LED and green LED:
    digitalWrite(greenledPin13, LOW);
    // display message
    Serial.println("Sunset\n"); // Add code instruction here!

  }
  else {
    // turn red LED off:
    digitalWrite(redledPin, LOW);
    // turn on onboard LED and green LED;
    digitalWrite(greenledPin13,HIGH);
    // display message
    Serial.println("Sunrise\n"); // Add code instruction here!
  }
}

With the modifications made to the original sketch, upload it to the Arduino and
open the Serial Monitor. As you wave your hand over the photocell, you see the
messages “Sunrise” (no hand over the sensor) and “Sunset” (hand over the sensor)
displayed on the Serial Monitor. Figure 2-5 shows the two messages displayed on
the Serial Monitor.

Experiment with the location of the Sunrise-Sunset detector to obtain the best cir-
cuit response. Enjoy!

The block diagram in Figure 2-6 shows the electronic component blocks and the
electrical signal flow for the Sunrise-Sunset Light Switch. A Fritzing electronic circuit
schematic diagram of the switch is shown in Figure 2-7. Electronic circuit schematic
diagrams are used by electrical/electronic engineers to design and build cool elec-
tronic products for society.
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Figure 2-7. Sunrise-Sunset Light Switch circuit schematic diagram
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Figure 3-1. Tilt Sensing Servo Motor Controller built on a full-size clear breadboard

Let’s Build a Tilt Sensing Servo Motor
Controller
You can control a servo motor’s rotation direction through orientation detection
using a tilt control switch. In this project, you will build a Tilt Sensing Servo Motor
Controller. Refer to the Parts List for all the electronic components required for this
project. Here are the steps used to build the electronic device:

1. From the Ultimate Microcontroller Pack, place the required parts on your work-
bench or lab tabletop.

2. Assemble the servo motor with the appropriate mechanical assembly attach-
ment, as shown in Figure 3-2 (left).

3. Strip insulation from three ¼-inch solid wires and insert them into the servo
motor’s mini connector, as shown in Figure 3-2 (right).
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Figure 3-2. Servo motor with mechanical assembly attachment and modified servo motor wire
connector (left); close-up of modified servo motor wire connector (right)

4. Place and secure the servo motor on the full-size clear breadboard with hookup
wire, as shown in Figure 3-3.

5. Insert the modified servo motor wire connector into the full-size clear bread-
board, as shown in Figure 3-4.

6. Wire the electronic parts using the Fritzing diagram of Figure 3-5, or the actual
project shown in Figure 3-1.
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Figure 3-3. Placing and securing the servo motor on the full-size clear breadboard

Figure 3-4. Modified servo motor wire connector inserted into the full-size clear breadboard
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Figure 3-6. Digital data from tilt control switch: open tilt control switch (left), closed tilt control
switch (right)

Example 3-2. Tilt Control Switch with Serial Monitor

/* This sketch controls a servo motor using a tilt control switch!
 * Serial Monitor displays digital data from Tilt Control Switch.
 *
 * 15 December 2012
 * by Don Wilcher
 *
 */

#include<Servo.h> // include Servo library
int inPin = 2;   //  the Arduino input pin tilt control switch is wired to D2
int reading;    //   the current reading from the input pin
Servo myservo; //    create servo motor object

void setup()
{
    myservo.attach(9);      // attach servo motor to pin 9 of Arduino
    pinMode(inPin, INPUT); //  make pin 2 an input
    Serial.begin(9600);   //   open communication port
}

void loop()
{
    reading = digitalRead(inPin);   // store digital data in variable
    if(reading == HIGH) {           // check it against target value (HIGH)

        myservo.write(90);          // if digital data equals target value,
                                   //  servo motor rotates 90 degrees
        Serial.println(reading);  //   print tilt control switch digital data
        delay(15);               //    wait 15ms for rotation
    }
    else {                         // if it's not equal to target value...
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Figure 3-8. Tilt Sensing Servo Motor Controller circuit schematic diagram: orange wire (D9), red
wire (+5V), and brown wire (GND)

Circuit Theory
A tilt control switch is an electrical device used to detect orientation. Like using a
mini pushbutton and a light detector, a tilt control switch is another way to interact
with and control the Arduino.

The tilt control switch is a pair of small metal balls that make contact with pins and
close the circuit when the electrical device is held in an upright position. Figure 3-9
shows a typical tilt control switch. The tilt control switch can be wired to a resistor
to make an orientation detection sensor circuit.

Figure 3-10 shows an orientation detection sensor circuit and its electrical operating
conditions. The Arduino’s D2 pin is wired to the 1KΩ resistor in order to receive either
a zero or five volt control signal, based on the tilt control switch orientation. With
the tilt control switch pins open, the voltage across the 1KΩ resistor is zero volts.
When the switch pins are closed, the 1KΩ resistor has a five volt signal across it.
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Figure 4-1. Variety of LEDs

Figure 4-2. Twin LEDs block diagram
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Circuit Theory
An LED is an electronic part that emits light when properly wired in an electric circuit.
The LED has positive and negative leads protruding through a plastic body, as shown
in Figure 4-1. You can use the Arduino in electronic projects to operate multiple
LEDs. Figure 4-3 shows two LEDs wired to the Arduino D13 pin. The Arduino output
pins are capable of providing 40 mA (milliamperes) of electrical current, sufficient
to turn on two LED circuits wired in parallel.

Figure 4-3. Two LED circuits wired in parallel to the Arduino D13 pin; the arrows indicate the
LEDs are on

Twin LED Flasher
The circuit theory diagram shown in Figure 4-3 can easily be converted into a cool
electronic gadget. You can build a Twin LED Flasher using an Arduino, two 330 ohm
resistors, and LEDs, as shown in Figure 4-4. The Twin LED Flasher circuit schematic
diagram is shown in Figure 4-5. To make the flasher device compact, you can build
it on the MakerShield, as shown in Figure 4-6. Uploading the Blink sketch to the
Arduino allows you to test the MakerShield and the Twin LED Flasher. The Blink
sketch for the electronic flasher is shown in Example 4-1.
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Figure 4-6. MakerShield Twin LED Flasher

Example 4-1. Blink sketch

/*
  Blink
  Turns on an LED on for one second, then off for one second, repeatedly.

  This example code is in the public domain.
 */

// Pin 13 has an LED connected on most Arduino boards.
// give it a name:
int led = 13;

// the setup routine runs once when you press reset:
void setup() {
  // initialize the digital pin as an output:
  pinMode(led, OUTPUT);
}

// the loop routine runs over and over again forever:
void loop() {
  digitalWrite(led, HIGH);   // turn the LED on (HIGH is the voltage level)
  delay(1000);               // wait for a second
  digitalWrite(led, LOW);    // turn the LED off by making the voltage LOW
  delay(1000);               // wait for a second
}
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Build the Adjustable Twin LED Flasher
To make the Adjustable Twin LED Flasher, simply add a 10K ohm potentiometer to
the device. The flash rate can be adjusted to make the on/off toggling slower or
faster. The Fritzing diagram in Figure 4-7 along with the circuit schematic diagram
shown in Figure 4-8 will allow you to build the Adjustable Twin LED Flasher. The
MakerShield Adjustable Twin LED Flasher is shown in Figure 4-9 and the Adjustable
Twin LED Flasher sketch is shown in Example 4-2.

Figure 4-7. Adjustable Twin LED Flasher Fritzing diagram
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Figure 4-8. Adjustable Twin LED Flasher circuit schematic diagram

Example 4-2. Adjustable Twin LED Flasher sketch

/*
  Adjustable Twin LED Flasher
  Two LEDs will flash at a specified rate
  based on the 10K potentiometer setting.

  01 Jan 2013
  by Don Wilcher

 */

// Two LEDs with 330 ohm series resistors wired
// in parallel connected to pin 9.
int led = 9; // pin D9 assigned to led variable.

// A 10K potentiometer center pin wired to pin A0.
// One pin is wired to +5V with the other connected to GND.
int PotIn = A0; // pin A0 assigned to PotIn variable.

int Flash; // Flash variable to be used with "delay" instruction.

// the setup routine runs once when you press reset:
void setup() {
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  // initialize the digital pin as an output:
  pinMode(led, OUTPUT);
  // initialize the analog pin as an input:
  pinMode(PotIn, INPUT);
}

// the loop routine runs over and over again forever:
void loop() {
  Flash =analogRead(PotIn);  // read 10K pot, store value in Flash variable
  digitalWrite(led, HIGH);  //  turn the LED on (HIGH voltage level = on)
  delay(Flash);            //   wait for a Flash time delay in seconds
  digitalWrite(led, LOW); //    turn the LED off by making the voltage LOW
  delay(Flash);          //     wait for a Flash time delay in seconds
}

Figure 4-9. MakerShield Adjustable Twin LED Flasher
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It’s Alive! Build a FrankenBot Toy
You can build an interactive toy that responds to changing light levels by removing
the 10KΩ potentiometer and adding a photocell wired to a 1KΩ resistor of the Ad-
justable Twin LED Flasher. Wiring a photocell to a 1KΩ resistor allows the Arduino
to read light levels applied to pin A0. Figure 4-10 and Figure 4-11 show the Fritzing
and circuit schematic diagrams for the Interactive Twin LED Flasher. The Maker-
Shield Interactive Twin LED is shown in Figure 4-12.The photocell leads are bent
down to allow FrankenBot’s cardboard head to mount nicely on top of the Maker-
Shield, as shown in Figure 4-13.

Figure 4-10. Interactive Twin LED Flasher Fritzing diagram
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Figure 4-12. Makershield Interactive Twin LED Flasher

Figure 4-13. FrankenBot: cut out opening for the photocell and LEDs to pass through cardboard
FrankenBot head (left); mount cardboard Frankenbot head on top of MakerShield Interactive
Twin LED Flasher (right)
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Figure 5-1. The Arduino NOT Logic Gate

Circuit Theory
A NOT Logic Gate turns a TRUE signal into a FALSE signal. Let’s take the case of the
ordinary household light switch: When you flip the light switch in your home UP,
the light bulb turns on. Now, let’s mount the house light switch upside down. When
you send an UP signal to the switch, the light bulb will turn off. When you send a
DOWN signal to the switch, the light bulb turns on. To illustrate this basic FALSE-
TRUE operation, Figure 5-2 shows a simple NOT Logic Gate circuit you can build and
experiment with, using a few electronic components from the Ultimate Microcon-
troller Pack. After wiring the NOT Logic Gate circuit on the breadboard, the red LED
will be on. Pressing the pushbutton switch will turn the red LED off.

Figure 5-2. A simple NOT Logic Gate Fritzing wiring diagram
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Figure 5-5. The NOT Logic Gate Fritzing wiring diagram

The Arduino NOT Logic Gate will turn the green LED on once the sketch has been
uploaded to the microcontroller. Pressing the pushbutton switch will turn the green
LED off and the red LED will be on. Figure 5-6 shows the Arduino NOT Logic Gate in
operation. The green LED shows a TRUE output state when the pushbutton switch
in not pressed. Pressing the pushbutton switch shows a FALSE output state by turn-
ing on the red LED. Also,the != in the Arduino sketch is the computer programming
symbol for the logical NOT function.
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Figure 5-6. The Arduino NOT Logic Gate: pressing the pushbutton switch turns on the red LED
(FALSE output)

Example 5-1. The Arduino NOT Logic Gate sketch

/*
  Arduino_NOT_Logic_Gate

  This sketch demonstrates the NOT(Inverter) Logic Gate operation.

  With the pushbutton switch not pressed (Logic LOW input), the green LED
  (Logic HIGH output indicator) is on and the red LED (Logic LOW output
  indicator) is off.
  Pressing the pushbutton turns the green LED off and the red LED on.

 11 September 2013
 by Don Wilcher

 */

// set pin numbers:
int buttonPin = 2;     // the number of the pushbutton pin
int LEDred =  8;      //  pin number for the red LED
int LEDgreen = 9;    //   pin number for the green LED

// variables will change:
int buttonStatus = 0;         // variable for reading the pushbutton status

void setup() {
  // initialize the LED pins as outputs:
  pinMode(LEDred, OUTPUT);
  pinMode(LEDgreen, OUTPUT);
  // initialize the pushbutton pin as an input:
  pinMode(buttonPin, INPUT);
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Figure 5-8. The Arduino NOT Logic Gate block diagram

Figure 5-9. The Arduino NOT Logic Gate circuit schematic diagram

Something to Think About
How can a photocell be used to operate the Arduino NOT Logic Gate? 
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Figure 6-3. The AND Logic Gate Fritzing wiring diagram; the flat side of the LED is the negative
pin

Just like the NOT Logic Gate discussed in Chapter 5, the AND Logic Gate has a special
circuit symbol, shown in Figure 6-4. The truth table (TT) shows the logic gate oper-
ation. Figure 6-5 is an AND Logic Gate TT.

Figure 6-4. The AND Logic Gate circuit symbol

Figure 6-5. The AND Logic Gate truth table
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Figure 6-6. The Arduino AND Logic Gate with LED turned off

Figure 6-7. The Arduino AND Logic Gate with LED turned on
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1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 6-1 into the software’s text editor.

3. Upload the sketch to the Arduino.

4. Press the mini pushbutton switch for a moment.

The Arduino AND Logic Gate will turn on the LED when the photocell is covered and
the pushbutton switch is pressed. Releasing the pushbutton switch, or placing a
light on the photocell, turns the LED off, because the AND condition (in which both
switches are closed) no longer exists.

The Arduino does this by using the && operator in the if statement. && is the computer
programming symbol for the logical AND function.

Example 6-1. The Arduino AND Logic Gate sketch

/*
  The Arduino AND Logic Gate

  Turns on an LED connected to digital
  pin 7, when pressing a pushbutton switch and covering a photocell
  attached to pins 3 and 4.

27 Jan 2013
Revised 4 September 2013
by Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
int B = 3;     // the number of the B pushbutton pin
int A = 4;    //  the number of the A pushbutton pin

const int Cout =  7;      // the number of the LED pin

// variables will change:
int AStatus = 0;         // variable for reading the A pushbutton status
int BStatus = 0;
void setup() {
  // initialize the LED pin as an output:
  pinMode(Cout, OUTPUT);
  // initialize the pushbutton pins as inputs:
  pinMode(B, INPUT);
  pinMode(A, INPUT);
}

void loop(){
  // read the state of the pushbutton value:
  AStatus = digitalRead(A);
  BStatus = digitalRead(B);
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Figure 6-10. The Arduino AND Logic Gate circuit schematic diagram
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Figure 7-4. The OR Logic Gate circuit symbol

Figure 7-5. The OR Logic Gate Truth Table

The Arduino OR Logic Gate
You can build a digital computer OR Logic Gate circuit using the Arduino micro-
controller and a few electronic components from the Ultimate Microcontroller
Pack. The green LED turns on when either the pushbutton switch OR the photocell
is TRUE. You can easily build the logic circuit using the Fritzing wiring diagram shown
in Figure 7-6. You can build this basic digital computer circuit on MakerShield, as
shown in Figure 7-1.

Did you notice that the Fritzing wiring diagram looks like the AND Logic Gate circuit
of Chapter 6? That’s because it is. The cool thing about using an Arduino (or any
other computer, really) is that often you can use the same physical circuit and make
it do different things, simply by changing the computer code. In this case, either
pressing the pushbutton switch OR placing your hand over the photocell will turn
on the green LED.

This cool gadget can become an automatic LED night light. If your home loses power
because of an electrical storm or the area substation is not operating, this device
can function as an automatic light source. The photocell is electrically wired to detect
darkness. When night falls (or when the power fails), the signal at pin D4 becomes
TRUE, and the Arduino microcontroller turns on the green LED, as in Figure 7-7. Or,
if you just want to turn the light on when it isn’t dark out, you can just hit the push-
button switch. This makes the signal at pin D3 TRUE, which again causes the Arduino
microcontroller to turn on the green LED.
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Figure 7-6. The Arduino OR Logic Gate Fritzing wiring diagram
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Example 7-1. The Arduino OR Logic Gate sketch

/*
  The Arduino OR Logic Gate

  Turns on an LED connected to digital
  pin 7, when pressing either a pushbutton switch or covering a photocell
  attached to pins 3 and 4.

  27 Jan 2013
  Revised 4 September 2013
  by Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
int B = 3;     // the number of the B pushbutton pin
int A = 4;    //  the number of the A pushbutton pin

const int Cout =  7;      // the number of the LED pin

// variables will change:
int AStatus = 0;         // variable for reading the A pushbutton status
int BStatus = 0;
void setup() {
  // initialize the LED pin as an output:
  pinMode(Cout, OUTPUT);
  // initialize the pushbutton pins as inputs:
  pinMode(B, INPUT);
  pinMode(A, INPUT);
}

void loop(){
  // read the state of the pushbutton value:
  AStatus = digitalRead(A);
  BStatus = digitalRead(B);

  // check if the pushbuttons are pressed
  // if it is, the buttonStatus is HIGH:
  if (AStatus == HIGH || BStatus ==HIGH) {
    // turn LED on:
    digitalWrite(Cout, HIGH);
   }
  else {
    // turn LED off:
    digitalWrite(Cout, LOW);
  }
}

After uploading the Arduino OR Logic Gate sketch to the Arduino microcontroller,
the green LED is off. Pressing the pushbutton switch or placing your hand over the
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photocell will turn on the green LED. To completely test the Arduino OR Logic Gate’s
operation, remember to use the TT shown in Figure 7-5.

The block diagram in Figure 7-8 shows the building blocks and the electrical signal
flow for the Arduino OR Logic Gate. Circuit schematic diagrams are used by electrical
engineers to quickly build cool electronic devices. The equivalent circuit schematic
diagram for the Arduino OR Logic Gate is shown in Figure 7-9.

Figure 7-8. The Arduino OR Logic Gate block diagram

Figure 7-9. The Arduino OR Logic Gate circuit schematic diagram
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Figure 8-4. The Up-Down Sensor Fritzing diagram
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Figure 8-5. The Up-Down Sensor circuit schematic diagram

You can build the Up-Down Sensor on a MakerShield, as shown in Figure 8-6. The
MakerShield allows you to carry it in a shirt pocket, computer bag, or purse for
convenience. Example 8-1 can be uploaded to the Arduino after entering the code
into the IDE’s text editor screen.

Example 8-1. Up-Down Sensor sketch

/*
  Up-Down Sensor with Flashing LEDs

  Flashes green and red LEDs at pin 8 when the tilt control
  switch attached to pin 3 is tilted. The green LED wired to
  pin 8 turns turns solid when no tilt condition is detected.

  05 Feb 2013
  Don Wilcher

 */

// constants won't change; they're used here to
// set pin numbers:
const int tiltPin = 3;     // the number of the tilt control switch pin
const int ledPin = 8;      // the number of the LED pin

// variables will change:
int tiltState = 0;         // variable for tilt control switch status

void setup() {
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Figure 8-6. The Up-Down Sensor built on a MakerShield
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Circuit Theory
Figure 9-2 shows a typical RGB LED with the wiring pinout names. There are three
pins, one for each color, and one common pin for positive attachment to a power
supply. Like the ordinary LED, the positive and negative pins are wired to the positive
and negative points of a DC (direct current) circuit. To illustrate, Figure 9-3 shows
three SPST (single pole, single throw) switches wired to control red, green, and blue
LEDs. Closing the contacts on SPST switch SW1 will allow the battery’s (VBattery)
current to flow through the red LED, turning it on. The other switches (SW2 and SW3)
will turn on the green and blue LEDs as well. The individual colors can be lit se-
quentially or at random using the three SPST switches. The Arduino microcontroller
will provide a sequential switching order, allowing the red, green, and blue LEDs to
turn on accordingly.

Figure 9-2. A typical RGB LED with pinout names
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Figure 9-4. The RGB Flasher Fritzing diagram

82 Make: Basic Arduino Projects





Figure 9-6. The RGB Flasher built on a MakerShield

Example 9-1. The RGB Flasher sketch

/*
  RGB Flasher

  Flashes the red, green, and blue LEDs of an RGB LED
  Turns on an LED on for one second, then off for one second for each
  color LED.

  15 Feb 2013
  Don Wilcher

 */

// RGB pins wired to the Arduino microcontroller.
// give them names:
int redled = 9;
int grnled = 10;
int bluled = 11;

// the setup routine runs once when you press reset:
void setup() {
  // initialize the digital pins as outputs:
  pinMode(redled, OUTPUT);
  pinMode(grnled, OUTPUT);
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Something to Think About
Are there common cathode RGB LEDs? If so, what Arduino microcontroller wiring
changes are needed to operate them correctly? 
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Figure 10-2. The Magic Light Bulb Fritzing diagram

Upload the Magic Light Bulb Sketch
With the Magic Light Bulb circuit built on the MakerShield, it’s time to upload the
sketch. Example 10-1 operates the RGB LEDs using a mini pushbutton switch. Here
are the steps you’ll need to follow: 

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 10-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

4. Press the mini pushbutton switch for a moment.

The Arduino will sequence the RGB LED tricolor pattern three times. Figure 10-3
shows the Magic Light Bulb in action.
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Figure 10-3. The Magic Light Bulb running through the tricolor pattern

Example 10-1. The Magic Light Bulb sketch

/*

  Magic Light Bulb

  Flashes the red, green, and blue LEDs of an RGB LED three times by
  briefly pressing a mini pushbutton switch.

  25 Feb 2013
  Don Wilcher

 */

// Pushbutton switch and RGB pins wired to the Arduino microcontroller.
// give them names:
int redled = 9;
int grnled = 10;
int bluled = 11;
int Pbutton = 8;
// initialize counter variable
 int n =0;
// monitor pushbutton switch status:
int Pbuttonstatus = 0;

// the setup routine runs once when you press reset:
void setup() {
// initialize the digital pins as outputs:
  pinMode(redled, OUTPUT);
  pinMode(grnled, OUTPUT);
  pinMode(bluled, OUTPUT);
// initialize the digital pin as an input:
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Figure 10-5. The Magic Light Bulb circuit schematic diagram
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Figure 11-1. The Metal Checker device

Let’s Build a Metal Checker
The Metal Checker is a cool electronics device to build with an Arduino and elec-
tronic parts from the Ultimate Microcontroller Pack. You can build the electronic
circuit on an ordinary breadboard or the MakerShield. Building the Metal Checker
on the MakerShield allows the device to fit nicely inside a Maker’s toolbox or work-
bench drawers. Also, the MakerShield is small enough to carry with you in the field
for scientific metal checking activities. Figure 11-2 provides a Fritzing diagram for
building the Metal Checker.
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The Arduino will turn on the piezo buzzer. Now you’re ready to unlock the metal
mysteries hiding in your house!

Example 11-1. The Metal Checker sketch

/*
  Metal Checker

  Turns on and off a piezo buzzer at pin 7 when metal is placed across
  the sense wires of the metal sensor circuit attached to pin 6.

  The circuit:
    * Piezo buzzer attached from pin 7 to ground
    * Metal Checker sensor attached to pin 7
    * 1KΩ fixed resistor attached from pin 6 to ground

  March 2013
  by Don Wilcher

*/

// set pin numbers:
const int MSensePin = 6;     // the number of the metal sense pin
const int PBuzzerPin =  7;   // the number of the piezo buzzer pin

// variables will change:
int MetalStatus = 0;         // variable for the metal sense status

void setup() {
  // initialize the LED pin as an output:
  pinMode(PBuzzerPin, OUTPUT);
  // initialize the pushbutton pin as an input:
  pinMode(MSensePin, INPUT);
}

void loop(){
  // read the state of the metal sense value:
  MetalStatus = digitalRead(MSensePin);

  // check if metal is present
  // if it is, the MetalStatus is HIGH:
  if (MetalStatus == HIGH) {
    // turn piezo buzzer on:
    digitalWrite(PBuzzerPin, HIGH);
  }
  else {
    // turn MetalStatus off:
    digitalWrite(PBuzzerPin, LOW);
  }
}
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Figure 12-1. The Theremin

Let’s Build a Theremin
The Theremin, invented in 1920 by Russian inventor Leon Theremin, uses an elec-
tronic circuit called an oscillator to create different sounds. In our Theremin, we’re
using the Arduino as an oscillator by programming it to select different tones based
on changing light levels. The tone changes are made by waving your hand over a
photocell, creating various sounds based on changing light levels. The circuit is built
on a breadboard with electronic components from the Ultimate Microcontroller
Pack, as just shown in the Parts List. Although the Theremin can be built on an
ordinary breadboard, the MakerShield makes the device small enough to carry in a
shirt pocket or Maker bag. Figure 12-2 shows a Fritzing diagram of the Theremin.
Also, the actual mini 8Ω speaker used in the Theremin project is shown in Figure 12-3.
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Figure 12-2. The Theremin Fritzing diagram

The electronic sounds generated by the Arduino are wired to a simple transistor
amplifier. Pay close attention to the 100 uF electrolytic capacitor’s orientation
(shown on the Fritzing diagram) to prevent damage to the Arduino. Also, the NPN
transistor’s pinout for either a 2N3904 or S9013 electronic component is shown on
the Fritzing diagram’s breadboard. The mini 8Ω speaker color wire leads must be
connected correctly (as shown in Figure 12-2) in order for the audio electronic
sounds to be heard through it.
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Circuit Theory
The 2N3904 or S39013 NPN transistor amplifies or increases the audio signal created
by the Arduino. The transistor has an amplification value called “gain” used to de-
termine the volume of an electrical signal. A typical gain value engineers use in
designing simple amplifiers like this one is 100. The mini 8Ω speaker can be wired
directly to pin D9 with a reasonable amount of volume, but the simple transistor
amplifier increases the sound by a factor of 100, making the Theremin sound louder.

The block diagram in Figure 12-5 shows the building blocks and the electrical signal
flow for the Theremin. A Fritzing software circuit schematic diagram of the Theremin
is shown in Figure 12-6. As a reminder, circuit schematic diagrams use electrical
symbols for electronic components and are abbreviated drawings of Fritzing
diagrams. 

Figure 12-5. The Theremin block diagram

Figure 12-6. The Theremin circuit schematic diagram
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Something to Think About
What sounds would be emitted by the Theremin’s simple transistor amplifier if the
mini 8Ω speaker was replaced with a piezo buzzer? Try it! 
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Figure 13-1. An Arduino Ohmmeter

Let’s Build an Arduino Ohmmeter
This gadget tests the resistance of electrical components. Place the unknown resis-
tor you want to test in series with the reference resistor R1 connected to GND. The
Arduino will calculate the resistance and display it on the Serial Monitor. The resist-
ance of other electrical objects can be measured with the Arduino Ohmmeter as
well. Building the Arduino Ohmmeter on a MakerShield protoboard makes the de-
vice small enough to carry to a friend’s house to check his electronic projects.
Figure 13-2 shows the Fritzing diagram for the Arduino Ohmmeter.
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Figure 13-2. An Arduino Ohmmeter Fritzing diagram

Upload the Arduino Ohmmeter Sketch
It’s time to upload the Ohmmeter sketch to the Arduino. Example 13-1 reads the
resistance of R2, and reports the result through the serial display. Here are the steps
you’ll need to take: 

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 13-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Ohmmeter sketch has been uploaded to the Arduino, place the unknown
resistor (shown as R2 on the Frizting diagram) you want to test in series with the
reference resistor R1 (1KΩ) connected to GND. The voltage across the R2 resistor
and its resistance value will be displayed on the Serial Monitor. Figure 13-3 shows
the output voltage (Vout) and the measured resistance of a 1KΩ resistor (R2) being
displayed on the Serial Monitor.
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Figure 13-3. R2 and Vout measured and displayed on the Serial Monitor

Example 13-1. The Arduino Ohmmeter sketch

/*
  Arduino Ohmmeter

 */

// set up pins on Arduino for LED and test lead
int analogPin = 0;     // reads the resistance of R2
int raw = 0;           // variable to store the raw input value
int Vin = 5;           // variable to store the input voltage
float Vout = 0;        // variable to store the output voltage
float R1 = 1000;       // variable to store the R1 value
float R2 = 0;          // variable to store the R2 value
float buffer = 0;      // buffer variable for calculation

void setup()
{
  Serial.begin(9600);             // Set up serial

}

void loop()
{
  raw = analogRead(analogPin);  // reads the input pin
  if(raw)
    {
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Figure 13-4. An Arduino Ohmmeter circuit schematic diagram
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Figure 14-1. The LCD News Reader

Let’s Build the LCD
The first task in building the LCD News Reader is to solder a 16-pin male header to
the LCD. The Ultimate Microcontroller Pack has several male headers for building
your own Arduino shields. The header needs to be cut to a length to match the 16
LCD copper pad holes. Figure 14-2 shows the male header cut to the appropriate
LCD length. Insert the 16-pin male header through the copper pad holes and solder
them one by one to the LCD printed circuit board (PCB). Figure 14-3 shows the male
header soldered onto the LCD PCB.

Place the LCD onto the solderless breadboard, as shown in Figure 14-4. Wire LCD
pin number “1” to ground and “2” to +5VDC. Attach the center pin of the 10KΩ
potentiometer to pin number “3” of the LCD. Wire the remaining 10KΩ potentiom-
eters pins to +5VDC and ground as shown in the diagram. With the LCD wired to
the solderless breadboard, apply power to it using the Arduino. Adjust the 10KΩ
potentiometer until the LCD’s top row displays pixel squares, as shown in
Figure 14-4. Complete the rest of the tester wiring using the Fritzing diagram shown
in Figure 14-5.
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Figure 14-5. The LCD News Reader Fritzing diagram

Example 14-1. The LCD News Reader sketch

/*
  The LCD News Reader

  20 August 2013

 */

// include the LCD library code:
#include <LiquidCrystal.h>

// set up pins on Arduino for LCD and test lead
LiquidCrystal lcd(12,11,5,4,3,2);

// set up the LCD's number of columns and rows

#define Xdelay 1900

String a;
String b;
String c;
String d;
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void setup() {
  lcd.begin(16,2);
  lcd.setCursor(0,0);

  clearLCD();
  backlightOn();

  lcd.print("HELLO, WORLD!");
  delay(Xdelay);

}

void loop()
{

  char databuff[16];
  char dispbuff[16];

  // display on/off test
  for(int x = 5; x>0; x--)
     {
     delay(1000);
     displayOff();
     delay(1000);
     displayOn();
     }

  clearLCD();
  backlightOn();
  lcd.print("SLOW FADE       ");
  fadeOut(100);
  fadeIn(10);

  // light up all segments as a test

  lcd.print("0123456789abcdef");
  delay(Xdelay);
  lcd.print("ghijklmnopqrstuv");
  delay(Xdelay);
  lcd.print("wxyz +?*&%$#()!=");
  delay(Xdelay);
  lcd.print("                ");
  delay(Xdelay);
  lcd.print("                ");
  delay(Xdelay);

  a = "0123456789abcdef";
  b = "ghijklmnopqrstuv";
  c = "wxyz +?*&%$#()!=";
  d = "                ";
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  selectLineTwo();
  lcd.print(a);
  delay(Xdelay);

  selectLineOne();
  lcd.print(a);
  selectLineTwo();
  lcd.print(b);
  delay(Xdelay);

  selectLineOne();
  lcd.print(b);
  selectLineTwo();
  lcd.print(c);
  delay(Xdelay);

  selectLineOne();
  lcd.print(c);
  selectLineTwo();
  lcd.print(d);
  delay(Xdelay);

  selectLineOne();
  lcd.print(d);
  selectLineTwo();
  lcd.print(d);
  delay(Xdelay);

  for (int x = 0; x<=5; x++)
    {
    for(int i = 15; i>=0; i--)
      {
       goTo(i);
       if (i%4 == 1)
         lcd.print("- ");
       if (i%4 == 2)
         lcd.print("I ");
       if (i%4 == 3)
         lcd.print("- ");
       if (i%4 == 0)
         lcd.print("I ");
       delay(100);
      }
    for(int i =0; i<=14; i++)
      {
       goTo(i);
       lcd.print(" @");
       delay(100);
      }
    }

  clearLCD();
}
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void selectLineOne()
{
   lcd.write(0xFE);   //command flag
   lcd.write(128);    //position
   delay(10);
}
void selectLineTwo()
{
   lcd.write(0xFE);   //command flag
   lcd.write(192);    //position
   delay(10);
}
void goTo(int position)
{
if (position<16)
  {
    lcd.write(0xFE);   //command flag
    lcd.write((position+128));    //position
  }else if (position<32)
    {
     lcd.write(0xFE);   //command flag
     lcd.write((position+48+128));    //position
} else { goTo(0); }
   delay(10);
}

void clearLCD()
{
   lcd.write(0xFE);   //command flag
   lcd.write(0x01);   //clear command
   delay(10);
}
void backlightOn()
{
    lcd.write(0x7C);   //command flag for backlight stuff
    lcd.write(157);    //light level
   delay(10);
}
void backlightOff()
{
    lcd.write(0x7C);   //command flag for backlight stuff
    lcd.write(128);    //light level for off
   delay(10);
}

void backlightValue(int bv)
{
    int val = bv;
    if (bv < 128) val= map(bv, 0, 1023, 128, 157);
    if (bv > 157) val = map(bv, 0, 1023, 128, 157);

    lcd.write(0x7C);   //command flag for backlight stuff
    lcd.write(val);    //light level
   delay(10);
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}

void displayOn()
{
   lcd.write(0xFE);   //command flag
   lcd.write(0x0C);   //clear command
   delay(10);
}

void displayOff()
{
   lcd.write(0xFE);   //command flag
   lcd.write(0x08);   //clear command
   delay(10);
}

void fadeOut(int fade)
{
  for (int x = 157; x>128; x--)
  {
    backlightValue(x);
    delay(fade);
  }
}

void fadeIn(int fade)
{
  for (int x = 128; x<=157; x++)
  {
    backlightValue(x);
    delay(fade);
  }
}
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Figure 14-7. The LCD News Reader block diagram

Figure 14-8. The LCD News Reader circuit schematic diagram

Something to Think About
How can a pushbutton switch be used to control the display?
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Figure 15-2. Fritzing diagram for a logic tester with an RGB LED

Upload the Logic Tester Sketch
With the Logic Tester built, it’s time to upload the sketch. As shown in
Example 15-1, the sketch operates an RGB LED using a pushbutton switch and two
fixed resistors. Here are the steps you’ll need to follow: 

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 15-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Logic Tester sketch has been uploaded to the Arduino microcontroller, the
RGB’s red LED will be on, as shown in Figure 15-1. Attaching the long test wire to
the +5VDC source on the MakerShield and pressing the pushbutton switch will allow
the RGB green LED to turn on, as shown in Figure 15-3.

Example 15-1. The Logic Tester sketch

/*
  Logic Tester with RGB LED

  Turns on the green LED when a logic "1" (+5V) signal is detected. The
  red LED will turn on at logic "0" (0V) signal.  Also, when powering
  up the Arduino the red LED is on.

  4 May 2013
  Don Wilcher

 */
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Figure 15-5. The Logic Tester Fritzing circuit schematic diagram

Something to Think About
How can the Logic Tester be operated without a pushbutton switch?
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Figure 16-1. A Logic Tester with an LCD

Let’s Build a Logic Tester
Building this tester requires the use of an LCD. If this is your first time using an LCD,
I suggest reading Chapter 14. For help adding the 16-pin male header to the LCD,
see Figure 14-2 and Figure 14-3. The 10KΩ potentiometer’s center pin is wired to
pin number 3 of the LCD. The potentiometer’s remaining pins should be wired to
+5VDC and ground. Place the LCD onto the solderless breadboard, as shown in
Figure 16-2. LCD pin numbers 1 and 2 are wired to ground and +5VDC, respectively.
Adjust the 10KΩ potentiometer contrast control for the LCD for proper pixel-square
visibility. For reference on how to do this, see Figure 14-4.

Complete the rest of the tester wiring using the Fritzing diagram shown in
Figure 16-2.
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+5V source, as shown in Figure 16-3. Impress the local Makerspace by testing Ar-
duino and digital electronic circuits with your Logic Tester!

Example 16-1. The Logic Tester sketch

/*
  Logic Tester
  LCD displays "HIGH (1)" when digital circuit signal is +5V. A "LOW (0)"
  is displayed when digital circuit signal is OV.

  27 April 2013
  Don Wilcher

 */

// include the LCD library code:
#include <LiquidCrystal.h>

// set up pins on Arduino for LCD and transistor lead:
LiquidCrystal lcd(12,11,5,4,3,2);
int xistorPin = 6;
int digitalStatus = 0;      // variable for reading the digital circuit state

// initialize the transistor pin as an input and set up the LCD's number
// of columns and rows:
void setup() {
  lcd.begin(16,2);
  lcd.setCursor(0,0);
  lcd.print("LOGIC TESTER");
  pinMode(xistorPin, INPUT);

}

void loop() {
  // check if digital signal is HIGH or LOW:
digitalStatus = digitalRead(xistorPin);
if (digitalStatus == HIGH) {
  // if digital circuit signal is +5V, display HIGH (1):
  lcd.setCursor(0,1);
  lcd.print("HIGH (1) ");   // display HIGH (1)
}
else {
  // if digital circuit signal is 0V, display LOW (0):
  lcd.setCursor(0,1);
  lcd.print(" LOW (0) ");
 }
}
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Figure 17-1. The Amazing Pushbutton

Let’s Build an Amazing Pushbutton
Building the Amazing Pushbutton requires the use of a USB cable to send digital
information from the Arduino to a computer screen. As shown in Figure 17-1, the
device is quite simple to build, using only a 1KΩ fixed resistor and a pushbutton
switch. The two components are connected in series. Where the two electronic
components tie together, a jumper wire connects between them and pin D7 of the
Arduino microcontroller.

Complete the rest of the Amazing Pushbutton wiring using the Fritzing diagram
shown in Figure 17-2. The placement of the parts is not critical, so experiment with
the locations of the electronic components and electrical wiring of the device. Al-
though a mini breadboard is shown in the Fritzing diagram, the MakerShield pro-
toboard provides a compact way to wire the device.
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Upload the Amazing Pushbutton
Sketch
With the Amazing Pushbutton built, it’s time to upload the sketch. Example 17-1
sends digital information to the Arduino IDE (integrated development environment)
Serial Monitor and turns the onboard LED on and off with each press of the push-
button switch. Here are the steps you’ll need to follow: 

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 17-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Example 17-1. The Amazing Pushbutton sketch

/*
* The Amazing Pushbutton
*
* Reads a digital input from a pushbutton switch and sends the letter
* L or H to the Serial Monitor.
*
*
*/

// variables for input pin and control LED
  int digitalInput = 7;
  int LEDpin = 13;

// variable to store the value
 int value = 0;

void setup(){

// declaration pin modes
  pinMode(digitalInput, INPUT);
  pinMode(LEDpin, OUTPUT);

// begin sending over serial port
  Serial.begin(9600);
}

void loop(){
// read the value on digital input
  value = digitalRead(digitalInput);

// write this value to the control LED pin
digitalWrite(LEDpin, value);

// if value is high then send the letter 'H'; otherwise, send 'L' for low
if (value)  Serial.print('H');
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            else
            Serial.print('L');

 // wait a bit to not overload the port
  delay(10);
}

Once the Amazing Pushbutton sketch has been uploaded to the Arduino, the Serial
Monitor will display “L” repeatedly in a row, as shown in Figure 17-3. Press the push-
button switch, and the Serial Monitor displays “H” repeatedly in a row (see
Figure 17-4).

Figure 17-3. L’s being displayed on the Arduino Serial Monitor
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Figure 17-4. H’s being displayed on the Arduino Serial Monitor

Download and Install Processing Notes
Before building this awesome visual Arduino Microcontroller project, you have to
install the Processing programming language on your computer. Here are the in-
stallation instructions:

1. Go to the Processing download web page.

2. Select the software that meets your operating system’s requirements.

3. Once the Processing software has been downloaded to your hard drive, follow
the prompts to complete the installation process.

After installing the Processing programming language onto your computer, you’re
now ready to build the visualization software for the Amazing Pushbutton device!

Let’s Visualize Digital Data with
Processing
The characters “L” and “H” are an interesting way to represent the information you
get when the pushbutton turns on and off. But if we really want to see the “magic”
of the pushbutton, we’ll need to use a graphical software language called
Processing. Processing software allows digital information (actually, just about any
kind of information) to be changed into computer graphics quite easily.
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*
*
*/

// importing the processing serial class
import processing.serial.*;

// the display item draws background and grid
  DisplayItems di;

// definition of window size and framerate
  int xWidth = 512;
  int yHeight = 512;
  int fr = 24;

// attributes of the display
  boolean bck = true;
  boolean grid = true;
  boolean g_vert = false;
  boolean g_horiz = true;
  boolean g_values = true;
  boolean output = false;

// variables for serial connection, portname, and baudrate have to be set
  Serial port;
  int baudrate = 9600;
  int value = 0;

// variables to draw graphics
  int actVal = 0;
  int num = 6;
  float valBuf[] = new float[num];
  int i;

// lets user control DisplayItems properties and value output in console
void keyPressed(){
  if (key == 'b' || key == 'B') bck=!bck; // background black/white
  if (key == 'g' || key == 'G') grid=!grid; // grid on/off
  if (key == 'v' || key == 'V') g_values=!g_values; // grid values on/off
  if (key == 'o' || key == 'O') output=!output; // turns value output on/off
}

void setup(){
  // set size and framerate
  size(xWidth, yHeight); frameRate(fr);

  // establish serial port connection
  // The "2" corresponds to the 3rd port (counting from 0) on the Serial
  // Port list dropdown. You might need to change the 2 to something else.
  String portname =Serial.list()[2];
  port = new Serial(this, portname, baudrate);
  println(port);

  // create DisplayItems object
  di = new DisplayItems();
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  // clear value buffer
  for(i=0; i < num; i++) {
    valBuf[0] = 0;
  }

}

void drawPushButtonState(){
  // read through the value buffer
  // and shift the values to the left
  for(i=1; i < num; i++) {
    valBuf[i-1] = valBuf[i];
  }
  // add new values to the end of the array
  valBuf[num-1] = actVal;
  noStroke();
  // reads through the value buffer and draws lines
  for(int i=0; i < num; i=i+2) {
    fill(int((valBuf[i]*255)/height), int((valBuf[i]*255)/height) , 255);
    rect(0, height-valBuf[i], width, 3);
    fill(int((valBuf[i+1]*255)/height), 255, 0 );
    rect(0, height-valBuf[i+1], width, 3);
  }
  // display value
  fill(((bck) ? 185 : 75));
  text( ""+(actVal), 96, height-actVal);
}

void serialEvent(int serial){
  // if serial event is 'H' actVal is increased
  if(serial=='H') {
    actVal = (actVal < height - (height/16)) ?
             (actVal + int(actVal/(height/2))+1) :
             (actVal = height - (height/(height/2)));

    if (output)
      println("Value read from serial port is 'H' - actualValue is now "
              + actVal);
  } else {
    // if serial event is 'L' actVal is decreased
    actVal = (actVal > 1) ?
             (actVal = actVal - int(actVal/64)-1) :
             (actVal=0);
    if (output)
      println("Value read from serial port is 'L' - actualValue is now "
              + actVal);
  }
}

void draw(){
  // listen to serial port and trigger serial event
  while(port.available() > 0){
        value = port.read();
        serialEvent(value);
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    }
    // draw background, then PushButtonState and
    // finally rest of DisplayItems
    di.drawBack();
    drawPushButtonState();
    di.drawItems();
}

Next, we need to use the DisplayItems sketch to display the interactions with the
Arduino on your screen. To do this, you need to open a new tab in the Processing
IDE for the DisplayItems sketch. Enter Example 17-3 into the new tab in the Pro-
cessing IDE text editor.

Example 17-3. The DisplayItems Processing sketch

/*
*  DisplayItems
*
*  This class draws background color, grid and value scale
*  according to the boolean variables in the pa_file.
*
*  This file is part of the Arduino meets Processing Project.
*  For more information visit http://www.arduino.cc.
*
*  created 2005 by Melvin Ochsmann for Malmo University
*
*/

class DisplayItems{

// variables of DisplayItems object
PFont font;
int gridsize;
int fontsize = 10;
String fontname = "Monaco-14.vlw";
String empty="";
int i;

// constructor sets font and fontsize
DisplayItems(){
  font = loadFont(fontname);
  gridsize = (width/2)/16+(height/2)/16;
  if(gridsize > 20) fontsize = 14;
  if(gridsize > 48) fontsize = 22;
  textFont(font, fontsize);
}

// draws background
void drawBack(){
       background( (bck) ? (0) : (255)  );
}

// draws grid and value scale
void drawItems(){
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Figure 17-7. The Amazing Pushbutton block diagram

Troubleshooting Tips for Processing
As in all Maker projects, a bug can occasionally creep in. Processing is an awesome
software package for developing cool Arduino microcontroller projects, but it can
be challenging to use. Here are a few troubleshooting tips for the most common
problems that can occur:

• Make sure the Arduino microcontroller is communicating with the Processing
software through USB connection. If the Arduino is not attached to the Pro-
cessing software, it may cause communication errors.

• Make sure the Amazing Pushbutton sketch is running on Arduino before start-
ing the Processing sketch. If the Processing software is unable to obtain data
from the Arduino microcontroller (because it wasn’t running), it will generate
an “unrecognized device error.”

• Make sure text for both the Arduino and Processing sketches is typed correctly
as shown in the software listings. Most of the software bugs are caused by
syntax or incorrectly typed code for both programming languages.

Following these three guidelines should minimize your frustration when it comes
to debugging the Amazing Pushbutton device project build.
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Figure 17-8. The Amazing Pushbutton Fritzing circuit schematic diagram

Something to Think About
How can the letters “L” and “H” in Figure 17-3 and Figure 17-4 be replaced with the
numbers “0” and “1”?
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Figure 18-1. The Terrific Tilt Switch

Let’s Build a Terrific Tilt Switch
The Terrific Tilt Switch, like the Amazing Pushbutton, requires a USB cable to send
digital information from the switch to the computer screen. As shown in
Figure 18-1, the device is quite simple to build: it requires just a 1KΩ fixed resistor
and a tilt switch. The two components are connected in series like the Amazing
Pushbutton device. Where the two components tie together, a jumper wire connects
between them and pin D7 of the Arduino microcontroller.

The Terrific Tilt Switch can be built using the Fritzing wiring diagram shown in
Figure 18-2. The placement of the parts is not critical, so have some fun placing the
components in different places. Although the Fritzing diagram shows a mini bread-
board, feel free to use the MakerShield protoboard if you want.
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Figure 18-2. The Terrific Tilt Switch Fritzing wiring diagram

Upload the Terrific Tilt Switch Sketch
It’s time to upload the Arduino sketch for the Terrific Tilt Switch. Example 18-1 takes
information from the tilt switch and sends it to the Arduino IDE (integrated devel-
opment environment) Serial Monitor, displaying a series of the characters “H” and
“L” with each rotation of the tilt switch.

Did you notice that parts of the program look like the listing shown in Chapter 17?
That’s because the serial communication technique—the part of the code that lets
the Arduino talk with Processing—remains the same no matter what the Arduino
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is using as input or how Processing displays the data. Here are the steps you’ll need
to follow: 

1. Attach the Arduino to your computer using a USB cable.

2. Open the Arduino software and type Example 18-1 into the software’s text
editor.

3. Upload the sketch to the Arduino.

Once the Terrific Tilt Switch sketch has been uploaded to the Arduino, the Serial
Monitor will display “L” repeatedly in a row, as shown in Figure 18-3. If you tilt the
switch, the Serial Monitor will display “H” repeatedly (see Figure 18-4).

Figure 18-3. L’s being displayed on the Arduino Serial Monitor
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Figure 18-4. H’s being displayed on the Arduino Serial Monitor

Example 18-1. The Terrific Tilt Switch sketch

/*
* The Terrific Tilt Switch
*
* Reads a digital input from a tilt switch and sends a series of
* L's or H's to the Serial Monitor.
*
*
*/

// variables for input pin and control LED
  int digitalInput = 7;
  int LEDpin = 13;

// variable to store the value
 int value = 0;

void setup(){

// declaration pin modes
  pinMode(digitalInput, INPUT);
  pinMode(LEDpin, OUTPUT);

// begin sending over serial port
  Serial.begin(9600);
}
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  boolean g_values = false;
  boolean output = true;

  Serial port;

  // The "2" corresponds to the 3rd port (counting from 0) on the Serial
  // Port list dropdown. You might need to change the 2 to something else.
  String portname = Serial.list()[2];
  int baudrate = 9600;
  int value = 0;
  boolean tilted = true;
  float a = 0;
  int speed = 5; // how many pixels that the circle will move per frame

void keyPressed(){

  if (key == 'b' || key == 'B') bck=!bck;
  if (key == 'g' || key == 'G') grid=!grid;
  if (key == 'v' || key == 'V') g_values=!g_values;
  if (key == 'o' || key == 'O') output=!output;
}

void setup(){

      size(xWidth, yHeight);
      frameRate(fr);

      di = new DisplayItems();

      port = new Serial(this, portname, baudrate);
      println(port);
}
// Method moves the circle from one side to another,
// keeping within the frame
void moveCircle(){

  if(tilted) {
      background(0);

      a = a + speed;
      if (a > (width-50)) {
        a = (width-50);
      }
      ellipse(a, (width/2), 100,100);

  }else{
      background(0);

      a = a - speed;
      if (a < 50) {
        a = 50;
      }
      ellipse(a, (width/2), 100,100);

    }

Chapter 18: The Terrific Tilt Switch (with Processing) 163



  }

void serialEvent(int serial){
        if(serial=='H') {
             tilted = true;
              if(output) println("High");

        }else {
             tilted = false;
                if(output) println("Low");
         }
}

void draw(){

  while(port.available() > 0){
        value = port.read();
        serialEvent(value);
    }

    di.drawBack();

    moveCircle();

    di.drawItems();

}

Figure 18-5. An interactive (moving) white-filled circle created in Processing
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The block diagram in Figure 18-7 shows the electronic component blocks and the
data flow for the Terrific Tilt Switch. A Fritzing electronic circuit schematic diagram
of the Terrific Tilt Switch is shown in Figure 18-8.

Figure 18-7. The Terrific Tilt Switch block diagram

Something to Think About
How can an external LED be wired to the MakerShield protoboard to visually rep-
resent the state of the tilt switch (just like the letters “L” and “H” do in the Serial
Monitor)?
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Figure 18-8. The Terrific Tilt Switch Fritzing circuit schematic diagram
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Figure 19-1. The Rocket Launcher

Let’s Build a Rocket Game
The Rocket Game, like the projects in Chapter 17 and Chapter 18, requires the use
of a USB cable to send digital information from four pushbutton switches to the
computer screen. As shown in Figure 19-1, the breadboard circuit is quite simple to
build and requires five 1KΩ fixed resistors and four pushbutton switches.

The basic digital circuit consists of a pushbutton switch and resistor wired in series.
This wiring connection is repeated three times for the remaining switches. These
switches are connected to pins D3 through D7 of the Arduino microcontroller.

The Rocket Game can be built using the Fritzing wiring diagram shown in
Figure 19-2. The placement of the parts is not critical, so experiment with the location
of the various electronic components, and the overall wiring of the device. One
challenge is to wire all of the electronic components using the awesome (but kind
of small) MakerShield protoboard. Can you fit it all on there?
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Example 19-1. The MultiDigital4 sketch

/*
*  MultiDigital4
*
*  Reads 8 digital inputs and sends their values over the serial port.
*  A byte variable is used to store the state of all eight pins. This byte
*  is then sent over the serial port.
*
*  modified ap_ReadDigital8 sketch by Melvin Oschmann
*
*  8 June 2013
*  Don Wilcher
*
*/

// 8 variables for each pin
  int digitalInput_1 = 3;
  int digitalInput_2 = 4;
  int digitalInput_3 = 5;
  int digitalInput_4 = 6;
  int digitalInput_5 = 7;
  int digitalInput_6 = 8;
  int digitalInput_7 = 9;
  int digitalInput_8 = 10;

// 8 variables to store the values
  int value_1 = 0;
  int value_2 = 0;
  int value_3 = 0;
  int value_4 = 0;
  int value_5 = 0;
  int value_6 = 0;
  int value_7 = 0;
  int value_8 = 0;

// byte variable to send state of all pins over serial port
  int myByte = 0;

// control LED
  int controlLED = 13;

void setup(){

// set pin modes
  pinMode(digitalInput_1, INPUT);  pinMode(digitalInput_2, INPUT);
  pinMode(digitalInput_3, INPUT);  pinMode(digitalInput_4, INPUT);
  pinMode(digitalInput_5, INPUT);  pinMode(digitalInput_6, INPUT);
  pinMode(digitalInput_7, INPUT);  pinMode(digitalInput_8, INPUT);

  pinMode(controlLED, OUTPUT);

// begin sending out over the serial port
  Serial.begin(9600);
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}

void loop(){

// set 'myByte' to zero
  myByte = 0;

// then read all the INPUTS and store values
// in the corresponding variables
  value_1 = digitalRead(digitalInput_1);
  value_2 = digitalRead(digitalInput_2);

  value_3 = digitalRead(digitalInput_3);
  value_4 = digitalRead(digitalInput_4);

  value_5 = digitalRead(digitalInput_5);
  value_6 = digitalRead(digitalInput_6);

  value_7 = digitalRead(digitalInput_7);
  value_8 = digitalRead(digitalInput_8);

/* check if values are high or low and 'add' each value to myByte
*  what it actually does is this:
*
*          00 00 00 00  ('myByte set to zero')
*        | 00 10 10 00  ('3 and 5 are 1')
*        --------------
*          00 10 10 00  ('myByte after logical operation')
*
*/

  if (value_1) {
    myByte = myByte | 0;
    digitalWrite(controlLED, HIGH);
  } else digitalWrite(controlLED, LOW);

  if (value_2) { myByte = myByte | 1; }
  if (value_3) { myByte = myByte | 2; }
  if (value_4) { myByte = myByte | 4; }
  if (value_5) { myByte = myByte | 8; }
  if (value_6) { myByte = myByte | 16; }
  if (value_7) { myByte = myByte | 32; }
  if (value_8) { myByte = myByte | 64; }

// send myByte out over serial port and wait a bit to not overload the port
  Serial.print(myByte);
  delay(10);
}

The Rocket Launcher with Processing
The numbers from the MultiDigital4 sketch will be interpreted by Processing and
used to drive a cool graphics screen, with color numbers and text. The layout of the
Processing canvas is similar to the projects in Chapter 17 and Chapter 18 (with
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obvious differences in text and animation). After uploading the Rocket Game sketch
to the Arduino, a jumbled blob of text and numbers along with a numbered grid
will be displayed on your computer screen, as shown in Figure 19-4. If you look
closely, you can see the word “rocket” repeated several times on the screen. Pressing
pushbutton 1 will show the rocket launcher in action, as the text and associated
number begin to rise on the numbered grid. Figure 19-5 shows an example of a
virtual rocket being launched into the sky! Releasing the pushbutton allows the
rocket to fall nicely back to earth.

Figure 19-4. A blob of text and numbers
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Figure 19-5. Rocket 3 being launched into the sky

Another cool feature of the Rocket Game Processing sketch (Example 19-2) is the
Console Monitor located below the numbered grid. The Console Monitor displays
the binary status of the pushbuttons and launched rockets. As shown in
Figure 19-5, one of the pushbuttons has a binary status of 1, while the other three
pushbuttons show a binary status of 0. From that, can you deduce which pushbutton
has been pressed?

The Console Monitor can also be used as a sketch debugging tool when developing
graphics, animation, and Arduino applications.

176 Make: Basic Arduino Projects





  int fontsize2 = 72;  // change size of text on screen
  PFont font2;
  float valBuf[] = new float[8];
  int xpos, ypos;

// lets user control DisplayItems properties and value output in console
void keyPressed(){
  if (key == 'b' || key == 'B') bck=!bck;  // background black/white
  if (key == 'g' || key == 'G') grid=!grid;  // grid on/off
  if (key == 'v' || key == 'V') g_values=!g_values;  // grid values on/off
  if (key == 'o' || key == 'O') output=!output; //turns value output on/off
}

void setup(){
  // set size and framerate
  size(xWidth, yHeight); frameRate(fr);
  // establish serial port connection
  port = new Serial(this, portname, baudrate);
  println(port);
  // create DisplayItems object
  di = new DisplayItems();
  // load second font for graphical representation and clear value buffer
  font2 = loadFont(fontname2);
  for(i = 0; i < valBuf.length; i++ ){
    valBuf[i] = (height/2);
  }
}

void drawFourSwitchesState(){
  textFont(font2, fontsize2);
  if (output) print("4Switches Statuses: ");

  // takes value, interprets it as a byte
  // and reads each bit
  for (i=0; i < 4 ; i++){

    if(output) print(value & 1);
    print("ROCKET!");

    // if a bit is 1, increase the corresponding value in value buffer
    // array by 1
    if ( (value & 1) == 1){  // if 0, number drops when pushbutton is
                             // pressed; if 1, number goes up when
                             // pushbutton is pressed

      if(valBuf[i] > fontsize2 ) valBuf[i] -=1;
      // if a bit is 0, decrease corresponding value
    }else{
      if(valBuf[i] < height) valBuf[i] += 1;
    }

    if(output)
      print(".");

    // draw number for each value at its current height

178 Make: Basic Arduino Projects





*/

class DisplayItems{

// variables of DisplayItems object
PFont font;
int gridsize;
int fontsize = 10;
String fontname = "Monaco-14.vlw";
String empty="";
int i;

// constructor sets font and fontsize
DisplayItems(){
  font = loadFont(fontname);
  gridsize = (width/2)/16+(height/2)/16;
  if(gridsize > 20) fontsize = 14;
  if(gridsize > 48) fontsize = 22;
}

// draws background
void drawBack(){
       background( (bck) ? (0) : (255)  );
}

// draws grid and value scale
void drawItems(){
  textFont(font, fontsize);

  if(grid){  stroke( (bck) ? (200) : (64) );
             fill((bck) ? (232) : (32) );

  // vertical lines
  if(g_vert){
    for (i=0; i < width; i+=gridsize){
    line(i, 0, i, height);
    textAlign(LEFT);
    if (g_values &&
        i%(2*gridsize)==0
        && i < (width-(width/10)))
      text( empty+i, (i+fontsize/4), 0+fontsize);
  }}

  // horizontal lines
  if(g_horiz){
    for (int i=0; i < height; i+=gridsize){
    line(0, i, width, i);
    textAlign(LEFT);
    if (g_values &&
        i%(2*gridsize)==0)
      text( empty+(height-i), 0+(fontsize/4), i-(fontsize/4));
    }}
  }
 }
}// end class Display
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Figure 19-7. The Rocket Game Fritzing circuit schematic diagram
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Figure 20-1. The Temperature Indicator

Let’s Build a Temperature Indicator
As shown in Figure 20-1, the breadboard analog circuit is quite simple to build, and
requires only a thermistor and a 10KΩ fixed resistor wired in series. Where the two
components are tied together, a jumper wire connects between them and pin A3
of the Arduino microcontroller.

The Temperature Indicator can be built using the Fritzing wiring diagram shown in
Figure 20-2. Since there are only two electronic components, you have plenty of
room for electrical wiring and breadboard placement of the components. Although
the Fritzing wiring diagram shows a small breadboard, you can alternatively use the
MakerShield protoboard to build the Temperature Indicator.
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numbers based on the thermistor’s change in resistance. It uses the same serial
communication technique used in Chapters 17, 18, and 19 to talk with the Process-
ing programming language. Here are the steps you’ll need to follow:

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 20-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

With the Temperature Indicator sketch uploaded to the Arduino microcontroller,
the Serial Monitor will display decimal numbers as shown in Figure 20-3. If you touch
the thermistor—making it hotter with your own body heat—the Serial Monitor
numbers will change. Also, if you add an external LED between pins D13 and GND,
you’ll have a visual indicator of when the thermistor’s temperature has exceeded
the threshold value programmed in the sketch. Figure 20-4 shows the Temperature
Indicator’s LED in operation.The Temperature Indicator is not an actual electronic
thermometer but a device that can sense a certain heat level and respond to it by
turning on an LED. The temperature units of Fahrenheit or Celsius are not displayed,
thereby removing the concern about the thermistor’s temperature resolution so the
focus is on the device’s actual operating performance.

Figure 20-3. Decimal numbers being displayed on the Arduino Serial Monitor
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  int analogInput = 3;
  int LEDpin = 13;

// variable to store the value
  int value = 0;

// a threshold to decide when the LED turns on
  int threshold = 800;

void setup(){

// declaration of pin modes
  pinMode(analogInput, INPUT);
  pinMode(LEDpin, OUTPUT);

// begin sending over serial port
  Serial.begin(9600);
}

void loop(){
// read the value on analog input
  value = analogRead(analogInput);

// if value greater than threshold turn on LED
if (value < threshold) digitalWrite(LEDpin, HIGH);
else digitalWrite(LEDpin, LOW);

// print out value over the serial port
  Serial.println(value);

// and a signal that serves as separator between two values
  Serial.write(10);

// wait for a bit to not overload the port
  delay(100);
}

The Negative Temperature Coefficient
(NTC) Sensor with Processing
When we connect the Temperature Indicator sketch to Processing, the thermistor
temperature data from the sketch will be displayed in the Processing IDE Console
Monitor, as well as on the main screen of the computer. The layout of this Processing
canvas is simple. The graphics consist of two rectangular boxes with fluttering hor-
izontal lines. The fluttering lines represent the thermistor’s temperature, received
from the Arduino microcontroller. An example of the fluttering lines and Console
Monitor thermistor data is shown in Figure 20-5 and Figure 20-6. The NTC Sensor
sketch is shown in Example 20-2. After uploading the NTC Sensor sketch to the
Arduino microcontroller, two rectangular boxes with fluttering horizontal lines rep-
resenting thermistor data will be visible on the computer screen.
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Figure 20-5. Fluttering horizontal data lines

Figure 20-6. Thermistor data displayed on the Processing Console Monitor
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The block diagram in Figure 20-7 shows the electronic component blocks and the
data flow for the Temperature Indicator. A Fritzing electronic circuit schematic dia-
gram of the Temperature Indicator is shown in Figure 20-8. Electrical/electronic
engineers use circuit schematic diagrams to design, build, and test cool interactive
electronic products for society.

Figure 20-7. The Temperature Indicator block diagram

Something to Think About
How can a second LED be wired to the Arduino microcontroller to display when the
temperature falls below a certain threshold?
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Figure 20-8. The Temperature Indicator Fritzing circuit schematic diagram
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Figure 21-1. The Sweeping Servo Motor Tester

Let’s Build a Servo Motor Tester
The Servo Motor Tester is quite simple to build and only requires the three compo-
nents shown in the Parts List. With this tester, you will be able to quickly check any
of the small voltage-based servo motors you may have in your junk box. The Servo
Motor Tester can be built using the Fritzing wiring diagram shown in Figure 21-2.
Since the major component for this project is the servo motor, placement of the
parts on the breadboard is not critical. You have lots of room to explore different
ways to place the servo motor when laying out the circuit on the breadboard.

In addition, by inserting the appropriate size solid wires into the three-pin female
connector, you can easily make a male connecting component. This homebrew male
connector makes it easy to insert the servo motor into a breadboard. (For further
reference on building a servo motor male connector, see Figure 3-4 in Chapter 3.)
Although the Fritzing wiring diagram shows a small breadboard, you can also use
the MakerShield protoboard to build the Servo Motor Tester.
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Figure 21-5. The Servo Motor Tester Fritzing circuit schematic diagram

Something to Think About
How can an LED be wired to the Arduino microcontroller to light up when the servo
motor is at 180°? 
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Figure 22-1. The assembled Electronic Cricket

Let’s Build an Electronic Cricket
The Electronic Cricket is a creative, interactive device that produces electronic
sounds using an Arduino microcontroller, a temperature sensor, two fixed resistors,
a potentiometer, and a mini speaker. The values for these electronic components
are in the Parts List. Follow the Fritzing wiring diagram shown in Figure 22-2 to
construct the cricket.

When the project is built, you can immediately test the cricket by holding the tem-
perature sensor between your fingers. The pitch of the sound coming out of the
speaker, as well as the frequency of the chirping, will increase as the temperature
rises. You can control the volume of the chirping with the potentiometer.
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Figure 22-4. The Electronic Cricket Fritzing circuit schematic diagram

Something to Think About
How can the mini speaker be replaced with an LED for a visual pitch indicator? 
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Figure 23-1. The assembled Pocket Stage Light

Let’s Build a Pocket Stage Light
Operating an electronic gadget with sensors is called physical computing. Other
examples of physical computing devices are Microsoft’s Kinect and smartphone
touch screens. The Pocket Stage Light is operated by warm temperature. The tem-
perature value is changed to an electrical voltage and used by the Arduino micro-
controller to turn on an RGB LED. Control over the color lighting sequence of red,
green, and blue is provided by an Arduino sketch.

Use the Fritzing wiring diagram shown in Figure 23-2 to build the Pocket Stage Light.
Touching the thermistor with your finger will signal the Arduino microcontroller to
turn on the red, green, and blue colors of the LED in sequence. After you release the
thermistor, the color LEDs will continue to sequence for approximately 10 seconds.
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Upload the Pocket Stage Light Sketch
With the Pocket Stage Light wired on the breadboard, now it’s time to upload the
Arduino sketch. Example 23-1 turns on three Arduino microcontroller digital pins
(D9, D10, and D11) in sequence that operate the red, green, and blue portion of the
RGB LED. Here are the steps you’ll need to follow:

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 23-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

The Arduino microcontroller is now programmed with the Pocket Stage Light
sketch. When the sketch starts running, the RGB LED is off. Touch the thermistor
with your finger, and the RGB LED will begin to sequence its red, green, and blue
colors. Releasing the sensor will allow the color sequencing to continue for approx-
imately one second. Figure 23-3 and Figure 23-4 show the operation of the Pocket
Stage Light.

Figure 23-3. Pocket Stage Light projecting a green light on a whiteboard
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Figure 23-4. Pocket Stage Light projecting a blue light on a whiteboard

Example 23-1. Pocket Stage Light sketch

/*
  Pocket Stage Light
  The RGB LED will sequence in colors (blue, green, red) by use
  of a thermistor.

  15 August 2013
  by Don Wilcher

 */

int tsensorPin = A0;    // select the input pin for the temperature sensor
int RPin = 11;          // select the pin for the red LED
int GPin = 10;          // select the pin for the green LED
int BPin = 9;           // select the pin for the blue LED
int tsensorValue = 0;   // to store the value from the temperature sensor

void setup() {
  // declare the LED pins as outputs:
  pinMode(RPin, OUTPUT);
  pinMode(GPin, OUTPUT);
  pinMode(BPin, OUTPUT);
  Serial.begin(9600);
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Figure 23-5. The Pocket Stage Light block diagram

Figure 23-6. The Pocket Stage Light Fritzing circuit schematic diagram

Something to Think About
Does a 10KΩ thermistor have a faster RGB LED turn-on response compared to the
Ultimate Microcontroller Pack’s sensing component?
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Figure 24-1. The assembled Electronic Pixel

Let’s Build an Electronic Pixel
In the case of the Electronic Pixel, the LED on and off commands are sent from the
Arduino’s Serial Monitor and converted into equivalent voltage pulses. These volt-
age pulses are sent through a USB cable attached between the computer and the
Electronic Pixel. Digital pin D9 of the Arduino microcontroller is used to turn on and
off the RGB LED.

The Electronic Pixel is built using a breadboard with the components wired to each
other, as shown in Figure 24-2. Although the Fritzing wiring diagram shows the
Electronic Pixel built on a breadboard, the MakerShield protoboard can be used as
well. Also, the Fritzing wiring diagram shows a single pole, double throw (SPDT)
switch instead of the double pole, double throw (DPDT) electrical component
shown in the Parts List. The remainder of the DPDT switch can be wired as shown
in Figure 24-2. Refer to Chapter 5 for additional instructions on how to set up the
DPDT switch for breadboarding.
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Figure 24-2. The Electronic Pixel Fritzing wiring diagram
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int ledPin = 9;    // the pin that the RGB LED is attached to
int incomingByte;  // a variable to read incoming serial data

void setup() {
  // initialize serial communication:
  Serial.begin(9600);
  // initialize the RGB LED pin as an output:
  pinMode(ledPin, OUTPUT);
}

void loop() {
  // see if there's incoming serial data:
  if (Serial.available() > 0) {
    // read the oldest byte in the serial buffer:
    incomingByte = Serial.read();
    // if it's a capital H, turn on the LED:
    if (incomingByte == 'H') {
      digitalWrite(ledPin, LOW);
    }
    // if it's an L, turn off the LED:
    if (incomingByte == 'L') {
      digitalWrite(ledPin, HIGH);
    }
  }
}

Figure 24-3. A very large red pixel projected onto a whiteboard
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Figure 24-6. The Electronic Pixel Fritzing circuit schematic diagram

Something to Think About
How can the switching sequence between the red, green, and blue LEDs be changed
to operate faster?
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Figure 25-1. The Metronome

Let’s Build a Metronome
The Metronome is quite easy to build and it looks and sounds awesome when op-
erating. The DC servo motor provides the swinging motion to a homebrew pendu-
lum rod made from a piece of solid wire. The solid wire is threaded through the
bottom hole of a servo arm. To secure the wire to the motor while in motion, the
end of the wire passing through the bottom hole is wrapped around the servo arm.
To complete the mechanical assembly of the servo motor, the homebrew pendulum
rod (the solid wire) is stretched out, as shown in Figure 25-1. Next, the servo motor
is attached to the breadboard using a piece of solid wire to prevent it from moving
when the pendulum rod is swinging back and forth. The wire is wrapped around
the servo motor. The free wire ends on each side of the servo motor are inserted
into the breadboard (see Figure 25-2).
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Figure 25-2. Servo motor attachment to breadboard: the free wire ends are inserted into the
breadboard

The 10KΩ potentiometer is used as a volume control to adjust the sound level of
the piezo buzzer. A cool trick used to make the “tick” sound, along with adjusting
the volume, is to place a small piece of tape over the piezo buzzer. Figure 25-3 shows
the location of the volume control, and the piezo buzzer with tape placed over it.
The Fritzing wiring diagram for building the Metronome is shown in Figure 25-4. As
with previous projects presented in this book, the MakerShield protoboard is a great
prototyping tool to use in building this cool mini Metronome device. Its bread-
boarding area allows the piezo buzzer, potentiometer, and servo motor components
to be wired to the Arduino microcontroller in a compact package.
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Figure 25-4. The Metronome Fritzing wiring diagram

Upload the Metronome Sketch
Before uploading Example 25-1 to the Arduino, check and correct any wiring errors
on your breadboard using the Fritzing diagram shown in Figure 25-4. With the Met-
ronome electrical circuit wired on the breadboard, now it’s time to upload the Ar-
duino sketch. Here are the steps you’ll need to follow: 
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Example 25-1. The Metronome sketch

/*
  Metronome sketch

  The servo motor arm will swing back and forth with a tick sound coming
  from a piezo buzzer.

  31 August 2013
  by Don Wilcher

*/

#include <Servo.h>

Servo myservo;   // create servo object to control a servo
                 // a maximum of eight servo objects can be created

int pos = 0;     // variable to store the servo position
int PBuzzer = 7; // piezo buzzer pin number

void setup()
{
  myservo.attach(9);  // attaches the servo on pin 9 to the servo object
  pinMode(PBuzzer, OUTPUT);
}

void loop()
{
  for(pos = 0; pos <=45; pos += 1)  // goes from 0 degrees to 45 degrees
  {                                 // in steps of 1 degree
    if(pos==45){
      digitalWrite(PBuzzer, LOW);
      delay(15);
      digitalWrite(PBuzzer, HIGH);
      delay(15);
      digitalWrite(PBuzzer, LOW);
      delay(15);
    }
    myservo.write(pos);     // go to position in variable 'pos'
    delay(15);              // waits 15ms to reach the position
  }

    for(pos = 45; pos>=1; pos-=1)     // goes from 45 degrees to 0 degrees
  {
    if (pos==1){
       digitalWrite(PBuzzer, LOW);
       delay(15);
       digitalWrite(PBuzzer, HIGH);
       delay(15);
       digitalWrite(PBuzzer, LOW);
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Figure 25-7. The Metronome Fritzing circuit schematic diagram
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Figure 26-1. The Secret Word Game

Let’s Build a Secret Word Game
The Secret Word Game is a little tricky to build because of the wiring. Therefore,
you’ll have to use the full breadboard that comes with the Ultimate Microcontroller
Pack to adequately space the parts, as shown in Figure 26-1. Use the Fritzing wiring
diagram shown in Figure 26-2 to build the Secret Word Game on the full-size
breadboard.

Pin 1 of the LCD is the leftmost input at the base of the screen. Pins 2 to 16 continue
to the right. (Another way to identify pin 1 is by the small circle placed on the PCB
right next to pin 1.)

The photocell and RGB LED should be placed on the breadboard so that they are
easily visible and accessible; you need to clearly see the LED, and easily shine a light
on the photocell.
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Upload the Secret Word Game Sketch
With the Secret Word Game wiring on the breadboard completed, now it’s time to
upload the Arduino sketch. Here are the steps you’ll need to follow: 

1. Attach the Arduino microcontroller to your computer using a USB cable.

2. Open the Arduino software and type Example 26-1 into the software’s text
editor.

3. Upload the sketch to the Arduino microcontroller.

The Arduino microcontroller is now programmed with the Secret Word Game
sketch. The LCD will be blank and the RGB LED turned off. When you press the “Start
Game” pushbutton, the RGB LED will light up. The red, green, and blue LEDs will
sequence five times before turning off. Figure 26-3 shows the RGB LED sequencing
after the Start Game pushbutton has been pressed.

Figure 26-3. The Secret Word Game starting its timing sequence using the RGB LED

Once the RGB LED has turned off, shining a light on the photocell will reveal the
secret word on the LCD (Figure 26-4). Removing the light from the photocell will
erase the secret word on the LCD. New secret words can easily be uploaded to the
Arduino by changing one line of instruction in the sketch.
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Figure 26-4. The secret word “Cat” being revealed on the LCD

Example 26-1. The Secret Word Game sketch

/*

  Demonstrates the use of a 16x2 LCD. A brief press of the Start Game
  pushbutton will turn on the RGB LED timing sequencing. The RGB LED turns
  off and the secret word can be revealed by a shining light on a photocell.

 25 August 2013
 by Don Wilcher

 */

// include the library code:
#include <LiquidCrystal.h>

// initialize the library with the numbers of the interface pins
LiquidCrystal lcd(12, 11, 5, 4, 3, 2);
int buttonPin = 6;     // the number of the Start Game pushbutton pin
int RPin = 7;          // select the pin for the red LED
int GPin = 8;          // select the pin for the green LED
int BPin = 9;          // select the pin for the blue LED

// variables will change:
int buttonStatus = 0;  // variable for reading the Start Game
                       // pushbutton status

void setup() {
  // initialize the pushbutton pin as an input:
  pinMode(buttonPin, INPUT);

  // declare the LED pins as outputs:
  pinMode(RPin, OUTPUT);
  pinMode(GPin, OUTPUT);
  pinMode(BPin, OUTPUT);
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  // set up the LCD's number of columns and rows:
  lcd.begin(16, 2);

}

void loop() {
  // read the state of the pushbutton value:
  buttonStatus = digitalRead(buttonPin);
  // check if the pushbutton is pressed
  // if it is, the buttonState is HIGH:
  if (buttonStatus == HIGH) {
    lcd.clear();
    delay(500);
    for (int i=0; i <= 5; i++){
      lcd.setCursor(8,0);
      lcd.print(i);

      // turn the red LED on:
      digitalWrite(BPin, HIGH);
      digitalWrite(RPin, LOW);

      // delay red LED for 1/2 second:
      delay(500);
      // turn the green LED on:
      digitalWrite(RPin, HIGH);
      digitalWrite(GPin, LOW);
      // delay green LED for 1/2 second:
      delay(500);
      // turn the blue LED on:
      digitalWrite(GPin, HIGH);
      digitalWrite(BPin, LOW);
      //delay blue LED for 1/2 second:
      delay(500);
    }
 } else {
     //turn red, green, and blue LEDs off:
     digitalWrite(RPin, HIGH);
     digitalWrite(GPin, HIGH);
     digitalWrite(BPin, HIGH);

     // print a Secret Word to the LCD:
     lcd.setCursor(0,0);
     lcd.print("Secret Word is:");
     // set the cursor to column 0, line 1
     // (note: line 1 is the second row, since counting begins with 0):
     lcd.setCursor(0, 1);
     // print the number of seconds since reset:
     lcd.print("Cat"); // change secret word or phrase here!
 }
}
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Figure 26-6. The Secret Word Game Fritzing circuit schematic diagram
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